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ABSTRACT 11 
Aligning and annotating the heterogeneous cell types that make up complex cellular tissues 12 
remains a major challenge in the analysis of biomedical imaging data. Here, we present a series 13 
of deep neural networks that allow for automatic non-rigid registration and cell identification in 14 
the context of the nervous system of freely-moving C. elegans. A semi-supervised learning 15 
approach was used to train a C. elegans registration network (BrainAlignNet) that aligns pairs of 16 
images of the bending C. elegans head with single pixel-level accuracy. When incorporated into 17 
an image analysis pipeline, this network can link neuronal identities over time with 99.6% 18 
accuracy. A separate network (AutoCellLabeler) was trained to annotate >100 neuronal cell 19 
types in the C. elegans head based on multi-spectral fluorescence of genetic markers. This 20 
network labels >100 different cell types per animal with 98% accuracy, exceeding individual 21 
human labeler performance by aggregating knowledge across manually labeled datasets. Finally, 22 
we trained a third network (CellDiscoveryNet) to perform unsupervised discovery and labeling 23 
of >100 cell types in the C. elegans nervous system by analyzing unlabeled multi-spectral 24 
imaging data from many animals. The performance of CellDiscoveryNet matched that of trained 25 
human labelers. These tools will be useful for a wide range of applications in C. elegans research 26 
and should be straightforward to generalize to many other applications requiring alignment and 27 
annotation of dense heterogeneous cell types in complex tissues. 28 
 29 
 30 
 31 
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INTRODUCTION 33 
Optical imaging of dense cellular tissues is widespread in biomedical research. Recently 34 
developed methods to label cells with highly multiplexed fluorescent probes should soon make it 35 
feasible to determine the heterogeneous cell types in any given sample1–3. However, it remains 36 
challenging to extract critical information about cell identity and position from fluorescent 37 
imaging data. Aligning images within or across animals that have non-rigid deformations can be 38 
inefficient and lack cellular-level accuracy. Additionally, annotating cell types in a given sample 39 
can involve time-consuming manual labeling and often only results in coarse labeling of the 40 
main cell classes, rather than full annotation of the vast number of defined cellular subtypes.  41 
 42 
Deep neural networks provide a promising avenue for aligning and annotating complex images 43 
of fluorescently-labeled cells with high levels of efficiency and accuracy4. Deep learning has 44 
generated high-performance tools to segment cells from background in images5,6. In addition, 45 
deep learning approaches have proven useful for non-rigid image registration in the context of 46 
medical image alignment7. However, this has not been as widely applied to align images of 47 
fluorescently labeled cells, which requires micron-level accuracy. Automated cell annotation 48 
using clustering approaches, for example applied to single-cell RNA sequencing data, has been 49 
widely adopted8. Recent studies have also shown the feasibility of using deep learning applied on 50 
image features9 or raw imaging data to label major cell classes8,10,11. However, these methods are 51 
still not sufficiently advanced to label the potentially hundreds of cellular subtypes in images of 52 
complex tissues. In addition, fully unsupervised discovery of the many distinct cell types in 53 
cellular imaging data remains an unsolved challenge. 54 
 55 
There is considerable interest in using these methods to automatically align and annotate cells in 56 
the nervous system of C. elegans, which consists of 302 uniquely identifiable neurons12–14. The 57 
optical transparency of the animal enables in vivo imaging of fluorescent indicators of neural 58 
activity at brain-wide scale.15,16 Advances in closed-loop tracking made this imaging feasible in 59 
freely-moving animals.17,18 These approaches are being used to map the relationship between 60 
brain-wide activity and flexible behavior (reviewed in19,20). However, the animal bends and 61 
warps its head as it moves, resulting in non-rigid deformations of the densely-packed cells in its 62 
nervous system. Fully automating the alignment and annotation of cells in C. elegans imaging 63 
data would facilitate high-throughput and high-SNR brain-wide calcium imaging. These methods 64 
could also be applied to unsolved problems in quantifying reporter gene expression, 65 
developmental trajectories, and more. 66 
 67 
Previous studies have described methods to align and annotate cells in multi-cellular imaging 68 
datasets from C. elegans and species with related imaging challenges like Hydra. Datasets from 69 
freely-moving animals pose an especially challenging case. Methods for aligning cells across 70 
timepoints in moving datasets include approaches that link neurons across adjacent timepoints21–71 
23, as well as approaches that use signal demixing24, alignment of body position markers using 72 
anatomical constraints25,26, or registration/clustering/matching based on features of the neurons, 73 
such as their centroid positions27–32. Targeted data augmentation combined with deep learning 74 
applied to raw images has recently been used to reduce manual labeling time during cell 75 
alignment.33 Deep learning applied to raw images has also been used to identify specific image 76 
features, like multi-cellular structures in C. elegans.34 We have previously applied non-rigid 77 
registration to full fluorescent images from brain-wide calcium imaging datasets to perform 78 
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neuron alignment, but performing this complex image alignment via gradient descent is very 79 
slow, taking multiple days to process a single animal’s data even on a computing cluster35.  In 80 
summary, all of these current methods for neuron alignment are constrained by a tradeoff 81 
between alignment accuracy and time spent processing each dataset, either due to manually 82 
labeling subsets of neurons or computing the complex alignments that actually yield >95% 83 
alignment accuracy. 84 
 85 
For C. elegans neuron class annotation, ground-truth measurements of neurons’ locations in the 86 
head have allowed researchers to develop atlases describing the statistical likelihood of finding a 87 
given neuron in a given location36–42. Some of these atlases have utilized the NeuroPAL 88 
transgene in which four fluorescent proteins are expressed in genetically-defined sets of cells, 89 
allowing users to manually determine their identity based on multi-spectral fluorescence and 90 
neuron position40–42. However, this manual labeling is time-consuming (hours per dataset), and 91 
statistical approaches to automate neuron annotation based on manual labeling have still not 92 
achieved human-level performance (>95% accuracy).  93 
 94 
Here we describe deep neural networks that solve these alignment and annotation tasks. First, we 95 
trained a neural network (BrainAlignNet) that can perform non-rigid registration to align images 96 
of the worm’s head from different timepoints in freely-moving data. It is >600-fold faster than 97 
our previous gradient descent-based approach using elastix35 and aligns neurons with 99.6% 98 
accuracy. Second, we trained a neural network (AutoCellLabeler) that annotates the identity of 99 
each C. elegans neuron in the head based on multi-spectral NeuroPAL labels. This network 100 
achieves 98% accuracy; versions trained on subsets of the fluorescent channels in NeuroPAL 101 
also achieve high performance. Finally, we trained a different network (CellDiscoveryNet) that 102 
can perform unsupervised discovery and labeling of >100 cell types of the C. elegans nervous 103 
system by comparing unlabeled NeuroPAL images across animals. Overall, our results reveal 104 
how to train neural networks to align and annotate cells in complex cellular imaging data with 105 
high performance. 106 
 107 
RESULTS 108 
 109 
BrainAlignNet: a neural network that registers cells in the deforming head of freely-110 
moving C. elegans 111 
When analyzing neuronal calcium imaging data, it is essential to accurately link neurons’ 112 
identities over time to construct reliable calcium traces. This task is challenging in freely-moving 113 
animals where the nervous system is warped on sub-second timescales by animal movement. 114 
Therefore, we sought to develop a fast and accurate method to perform non-rigid image 115 
registration that can deal with these warping images. Previous studies have described such 116 
methods for non-rigid registration of point clouds (e.g. neuron centroid positions)28–30,43, but, as 117 
we describe below, we found that performing full image alignment allows for higher accuracy 118 
neuron position alignments. 119 
 120 
To solve this task, we used a previously-described network architecture44,45 that takes as input a 121 
pair of 3-D images (i.e. volumes of fluorescent imaging data of the head of the worm) from 122 
different timepoints of the same neural recording (Fig. 1A). The network is tasked with 123 
determining how to warp one 3-D image (termed the “moving image”) so that it resembles the 124 
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other 3-D image (termed the “fixed” image). Specifically, the network outputs a dense 125 
displacement field (DDF), a pixel-wise coordinate transformation function designed to indicate 126 
which points in the moving and fixed images are the same (see Methods). The moving image is 127 
then transformed through this DDF to create a warped moving image, which should look like the 128 
fixed image. This network was selected because its LocalNet architecture (a modified 3-D U-129 
Net) allows it to do the feature extraction and image reconstruction necessary to solve the task. 130 
To train and evaluate the network, we used data from freely-moving animals expressing both 131 
pan-neuronal NLS-GCaMP and NLS-tagRFP, but only provided the tagRFP images to the 132 
network, since this fluorophore’s brightness should remain static over time. Since Euler 133 
registration of images (rotation and translation) is simple, we performed Euler registration on the 134 
images using a GPU-accelerated grid search prior to inputting them into the network. During 135 
training, we also provided the network with the locations of the centroids of matched neurons 136 
found in both images, which were available for these training and validation data since we had 137 
previously used gradient descent to solve those registration problems (“registration problem” 138 
here is defined as a single image pair that needs to be aligned) and link neurons’ identities35. The 139 
centroid locations are only used for network training and are not required for the network to 140 
solve registration problems after training. The loss function that the network was tasked with 141 
minimizing had three components: (1) image loss: the Local squared zero-Normalized Cross-142 
Correlation (LNCC) of the fixed and warped moving RFP images, which takes on a lower value 143 
when the images are more similar; (2) centroid alignment loss: the average of the Euclidean 144 
distances between the matched centroid pairs, where lower values indicate better alignment; and 145 
(3) regularization loss: a term that increases the overall loss the more that the images are 146 
deformed in a non-rigid manner (in particular, penalizing image scaling and scrambling of 147 
adjacent pixels; see Methods).  148 
 149 
We trained and validated the network on 5,176 and 1,466 image pairs, respectively, over 300 150 
epochs, at which point the validation loss plateaued (Fig. 1B). We then evaluated network 151 
performance on a separate set of 447 image pairs reserved for testing that were recorded from 152 
five different animals. On average, the network improved the Normalized Cross-Correlation 153 
(NCC) from 0.577 in the input image pairs to 0.947 in the registered image pairs – the maximum 154 
achievable score is 1 (Fig. 1C shows example of centroid positions; Fig. 1D shows image 155 
example; Fig. 1E shows both). The average distance between aligned centroids was 1.45 pixels 156 
(Fig. 1F). These results were only modestly different depending on the animal or the exact 157 
registration problem being solved (Extended Data Fig. 1A-C).  158 
 159 
To determine which features of the network were critical for its performance, we trained the 160 
network under conditions where we omitted either the centroid alignment loss, the regularization 161 
loss, or the image loss. In the first case, the network would not be able to learn based on whether 162 
the neuron centroids were well-aligned; in the second case, there would be no constraints on the 163 
network performing any type of deformation to solve the task; in the third case, the deformations 164 
that the network learned to apply could only be learned from the alignment of the centroids, not 165 
the raw tagRFP images. Registration performance of each network was evaluated using the NCC 166 
and centroid distance, which quantify the quality of tagRFP image alignment and centroid 167 
alignment, respectively (Fig. 1F). While the NCC scores were similar for the full network and 168 
the no-regularization and no-centroid alignment networks, other performance metrics like 169 
centroid distance were significantly impaired by the absence of centroid alignment loss or 170 
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regularization loss (Fig. 1E-F). This suggests that in the absence of centroid alignment loss or 171 
regularization loss, the network learns how to align the tagRFP images, but does so using 172 
unnatural deformations that do not reflect how the worm bends. In the case of the no-image loss 173 
network, all performance metrics, including both image and centroid alignment, were impaired 174 
compared to the full network (Fig. 1F). This suggests that allowing the network to learn how to 175 
warp the RFP images also enhances the network’s ability to learn how to align the neuron 176 
positions (i.e. centroids).  177 
 178 
The finding that the centroid positions were precisely aligned by the full network indicates that 179 
the centers of the neurons were correctly registered by the network. However, it does not ensure 180 
that all of the pixels that comprise a neuron are being correctly registered, which could be 181 
important for subsequent feature extraction from the aligned images. For example, it is formally 182 
possible to have perfect RFP image alignment in a context where the pixels from one neuron in 183 
the moving RFP image are scrambled to multiple neuron locations in the warped moving RFP 184 
image. In fact, we observed this in our first efforts to build such a network, where the loss 185 
function was only composed of the image loss. As an additional control to test for this possibility 186 
in our trained networks, we examined the network’s performance on data from a different strain 187 
that expresses pan-neuronal NLS-mNeptune (analogous to the pan-neuronal NLS-tagRFP) and 188 
eat-4::NLS-GFP, which is expressed in ~40% of the neurons in the C. elegans head (Fig. 1G 189 
shows example image). If the pixels within the neurons are being correctly registered, then 190 
applying image registration to the GFP channel for these image pairs should result in highly 191 
correlated images (i.e., a high NCC value close to 1). If the pixels within neurons are being 192 
scrambled, then these images should not be well-aligned. We used the DDF that the network 193 
learned from pan-neuronal mNeptune data to register the corresponding eat-4::NLS-GFP images 194 
from the same timepoints and found that this resulted in high-quality GFP image alignment (Fig. 195 
1H). In contrast, while the no-centroid alignment and no-regularization networks output a DDF 196 
that successfully aligned the RFP images, applying this DDF to corresponding GFP images 197 
resulted in poor GFP image registration (Fig. 1H shows that the no-centroid alignment network 198 
aligns the RFP channel, but not the GFP channel, in the eat-4::NLS-GFP strain). This further 199 
suggests that these reduced networks lacking centroid alignment or regularization loss are 200 
aligning the RFP images through unnatural image deformations. Altogether, these results suggest 201 
that the full Brain Alignment Neural Network (BrainAlignNet) can perform non-rigid 202 
registration on pairs of images from freely-moving brain-wide calcium imaging data. 203 
 204 
The registration problems included in the training, validation, and test data above were pulled 205 
from a set of registration problems that we had been able to solve with gradient descent (example 206 
images in Extended Data Fig. 1D). These problems did not include the most challenging cases, 207 
for example when the two images to be registered had the worm’s head bent in opposite 208 
directions (though we note that it did include substantial non-rigid deformations). We next asked 209 
whether a network trained on arbitrary registration problems, including those that were not 210 
solvable with gradient descent (example images in Extended Data Fig. 1E), could obtain high 211 
performance. For this test, we also omitted the Euler registration step that we performed in 212 
advance of network training, since the goal was to test whether this network architecture could 213 
solve any arbitrary C. elegans head alignment problem. For this analysis, we used the same loss 214 
function as the successful network described above. We also increased the amount of training 215 
data from 5,176 to 335,588 registration problems. The network was trained for 300 epochs, at 216 
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which point the validation loss plateaued. However, the test performance of the network was not 217 
high in terms of image alignment or centroid alignment (Extended Data Fig. 1F). This suggests 218 
that additional approaches may be necessary to solve these more challenging registration 219 
problems. Overall, our results suggest that, provided that there is an appropriate loss function, a 220 
deep neural network can perform non-rigid registration problems to align neurons across the C. 221 
elegans head with high speed and accuracy. 222 
 223 
Integration of BrainAlignNet into a complete calcium imaging processing pipeline 224 
The above results suggest that BrainAlignNet can perform high quality image alignments. These 225 
alignments are only valuable if they enable accurate linking of neurons over time. To test 226 
whether performance was sufficient for this, we incorporated BrainAlignNet into our existing 227 
image analysis pipeline for brain-wide calcium imaging data and compared the results to our 228 
previously-described pipeline, which used gradient descent to solve image registration35. This 229 
image analysis pipeline, the Automated Neuron Tracking System for Unconstrained Nematodes 230 
(ANTSUN), includes steps for neuron segmentation (via a 3D U-Net), image registration, and 231 
linking of neurons’ identities (Fig. 2A). Several steps are required to link neurons’ identities 232 
based on image registration. First, image registration defines a coordinate transformation 233 
between the two images, which is then applied to the segmented neuron ROIs, warping them into 234 
a common coordinate frame. To link neurons’ identities over time, we then build a N-by-N 235 
matrix (where N is the number of all segmented neuron ROIs at all timepoints in a given 236 
recording) with the following structure: (1) Enter zero if the ROIs were in an image pair that was 237 
not registered (we do not attempt to solve all registration problems, as this is unnecessary); (2) 238 
Enter zero if the ROIs were from a registered image pair, but the registration-warped ROI did not 239 
overlap with the fixed ROI; and (3) Otherwise, enter a heuristic value indicating the confidence 240 
that the ROIs are the same neurons based on several ROI features. These features include 241 
similarity of ROI positions and sizes, similarity of red channel brightness, registration quality 242 
(computed as NCC of the red channel images), a penalty for overly nonlinear registration 243 
transformations, and a penalty if ROIs were displaced over large distances during alignment. 244 
Finally, custom hierarchical clustering is applied to the matrix to generate clusters consisting of 245 
the ROIs that reflect the same neuron recorded at different timepoints. Calcium traces are then 246 
constructed from all of these timepoints, normalizing the GCaMP signal to the tagRFP signal 247 
(Fig. 2B-D shows example GCaMP dataset and GFP control datasets). We term the ANTSUN 248 
pipeline with gradient descent registration ANTSUN 1.435,46 and the version with BrainAlignNet 249 
registration ANTSUN 2.0 (Fig. 2A).  250 
 251 
We ran a series of control datasets through both versions of ANTSUN to benchmark their results. 252 
The first was from the previously-described animals with pan-neuronal NLS-mNeptune and eat-253 
4::NLS-GFP. The resulting GFP traces from these recordings allow us to quantify the number of 254 
timepoints where the neuron identities are not accurately linked together into a single trace (Fig. 255 
2B shows example dataset). Specifically, in this strain, this type of error can be easily detected 256 
since it can result in a low-intensity GFP neuron (eat-4-) suddenly having a high-intensity value 257 
when the trace mistakenly incorporates data from a high-intensity neuron (eat-4+), or vice versa. 258 
We computed this error rate, taking into account the overall similarity of GFP intensities (i.e. 259 
since we can only observe errors when GFP- and GFP+ neurons are combined into the same 260 
trace). For both versions of ANTSUN, the error rates were <0.5%, suggesting that >99.5% of 261 
timepoints reflect correctly linked neurons (Fig. 2E). 262 
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 263 
We next estimated the SNR of the data collected from ANTSUN 2.0, as compared to ANTSUN 264 
1.4. Here, we processed data from three pan-neuronal GCaMP animals and compared them to 265 
three animals expressing pan-neuronal GFP, in place of GCaMP. The relative signal fluctuations 266 
in GCaMP traces versus GFP traces (the GFP traces should ideally be flat) can provide an 267 
indication of the entire recording/processing pipeline’s SNR (Fig. 2C-D show examples). Results 268 
were similar for ANTSUN 1.4 and 2.0, which indicates that incorporating BrainAlignNet did not 269 
impair the SNR of the data (Fig. 2F). ANTSUN 2.0 also successfully extracted traces from a 270 
similar number of neurons (Fig. 2G). However, while ANTSUN 1.4 requires 250 CPU days per 271 
dataset for registration, ANTSUN 2.0 only requires 9 GPU hours, reflecting a >600-fold increase 272 
in computation speed (Fig. 2H). These results suggest that ANTSUN 2.0, which uses 273 
BrainAlignNet, provides a massive speed improvement in extracting neural data from GCaMP 274 
recordings without compromising the SNR or accuracy of the data. 275 
 276 
AutoCellLabeler: a neural network that automatically annotates >100 neuron classes in the 277 
C. elegans head from multi-spectral fluorescence 278 
We next turned our attention to annotating the identities of the recorded neurons in these brain-279 
wide calcium imaging data. C. elegans neurons have fairly stereotyped positions in the heads of 280 
adult animals, though fully accurate inference of neural identity from position alone has not been 281 
shown to be possible. Fluorescent reporter gene expression using well-defined genetic drivers 282 
can provide additional information to assist with neuron annotation. The NeuroPAL strain is 283 
especially useful in this regard. It expresses pan-neuronal NLS-tagRFP, but also has expression 284 
of NLS-mTagBFP2, NLS-CyOFP1, and NLS-mNeptune2.5 under a set of well-chosen genetic 285 
drivers (example image in Fig. 3A)40. With proper training, humans can manually label the 286 
identities of most neurons in this strain using neuron position and multi-spectral fluorescence. 287 
For most of the brain-wide recordings collected using our calcium imaging platform, we used a 288 
previously characterized strain with a pan-neuronal NLS-GCaMP7F transgene crossed into 289 
NeuroPAL35 . While freely-moving recordings were conducted with only NLS-GCaMP and 290 
NLS-tagRFP data acquisition, animals were immobilized at the end of each recording in order to 291 
capture multi-spectral fluorescence. Humans could manually label many neurons’ identities in 292 
these multi-spectral images, and the image registration approaches described above could map 293 
the ROIs in the immobilized data to ROIs in the freely-moving recordings to match neuron 294 
identity to GCaMP traces.  295 
 296 
Manual annotation of NeuroPAL images is time-consuming. First, to perform accurate labeling, 297 
the individual needs substantial amounts of training. Even after being fully trained, labeling all 298 
the ROIs in one NeuroPAL animal can take 3-5 hours. In addition, different individuals have 299 
different degrees of knowledge or confidence in labeling certain cell classes. For these reasons, it 300 
was desirable to automate NeuroPAL labeling, using datasets that had previously been labeled by 301 
a panel of human labelers. In particular, the labels that they provided with a high degree of 302 
confidence in their accuracy would be most useful for training an automated labeling network. 303 
Previous studies have developed statistical approaches for semi-automated labeling to label 304 
neural identity from NeuroPAL images, but the maximum precision that we are aware of is 90% 305 
without manual correction40. 306 
 307 
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We trained a 3-D U-Net47 to label the C. elegans neuron classes in a given NeuroPAL 3-D 308 
image. As input, the network received four fluorescent 3-D images from the head of each worm: 309 
pan-neuronal NLS-tagRFP, plus the NLS-mTagBFP2, NLS-CyOFP1, and NLS-mNeptune2.5 310 
images that label stereotyped subsets of neurons (Fig. 3A). During training, the network also 311 
received the human-annotated labels of which pixels belong to which neurons. Humans provided 312 
ROI-level labels and the boundaries of each ROI were determined using a previously-described 313 
neuron segmentation network35 trained to label all neurons in a given image (agnostic to their 314 
identity). Finally, during training the network also received an array indicating the relative 315 
weight to assign each pixel during training (Fig. 3B). This was incorporated into a pixel-316 
weighted cross-entropy loss function (lower values indicate more accurate labeling of each 317 
pixel), summing across the pixels in a weighted manner. Pixel weighting was adjusted as 318 
follows: (1) background was given extremely low weight; (2) ROIs that humans were not able to 319 
label were given low weight; (3) all other ROIs received higher weight, proportional to the 320 
subjective confidence that the human had in assigning the label to the ROI and the rarity of the 321 
label. Regarding this latter point, neurons that were less frequently labeled by human annotation 322 
received higher weight so that the network could potentially learn how to classify these neurons 323 
from fewer labeled examples.  324 
 325 
We trained the network over 300 epochs using a training set of 81 annotated images and a 326 
validation set of 10 images (Fig. 3C). Because the size of the training set was fairly small, we 327 
augmented the training data using both standard image augmentations (rotation, flipping, adding 328 
gaussian noise, etc.) and a custom augmentation where the images were warped in a manner to 329 
approximate worm head bending (see Methods). Because this Automatic Cell Labeling Network 330 
(AutoCellLabeler) labels individual pixels, it was necessary to convert these pixel-wise 331 
classifications into ROI-level classifications. AutoCellLabeler outputs its confidence in its label 332 
for each pixel, and we noted that the network’s confidence for a given ROI was highest near the 333 
center of the ROI (Fig. 3D). Therefore, to determine ROI-level labels, we took a weighted 334 
average of the pixel-wise labels within an ROI, weighing the center pixels more strongly. The 335 
overall confidence of these pixel scores was also used to compute a ROI-level confidence score, 336 
reflecting the network’s confidence that it labeled the ROI correctly. Finally, after all ROIs were 337 
assigned a label, heuristics were applied to identify and delete problematic labels. Labels were 338 
deleted if (1) the network already labeled another ROI as that label with higher confidence; (2) 339 
the label was present too infrequently in the network’s training data; (3) the network labeled that 340 
ROI as something other than a neuron (e.g. a gut granule or glial cell, which we supplied as valid 341 
labels during training); or (4) the network confidently predicted different parts of the ROI as 342 
different labels. 343 
 344 
We evaluated the performance of the network on 11 separate datasets that were reserved for 345 
testing. We assessed the accuracy of AutoCellLabeler on the subset of ROIs with high-346 
confidence human labels (subjective confidence scores of 4 or 5, on a scale from 1-5). On these 347 
neurons, average network confidence was 96.8% and its accuracy was 97.1%. We furthermore 348 
observed that the network was more confident in its correct labels (average confidence 97.3%) 349 
than its incorrect labels (average confidence 80.7%; Fig. 3E). More generally, AutoCellLabeler 350 
confidence was highly correlated with its accuracy (Fig. 3F). Indeed, excluding the neurons 351 
where the network assigns low (<75%) confidence increased its accuracy to 98.1% (Extended 352 
Data Fig. 2A displays the full accuracy-recall tradeoff curve). Under this confidence threshold 353 
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cutoff, AutoCellLabeler still assigned a label to 90.6% of all ROIs with high-confidence human 354 
labels, so we elected to delete the low-confidence (<75%) labels from the set of valid network 355 
output labels (see Extended Data Fig. 2A for rationale for the 75% cutoff value). 356 
 357 
We also examined model performance on data where humans had either low confidence or did 358 
not assign a neuron label. In these cases, it was harder to estimate the ground truth. Overall, 359 
model confidence was much lower for neurons that humans labeled with low confidence (87.3%) 360 
or did not assign a label (81.3%). The concurrence of AutoCellLabeler relative to low-361 
confidence human labels was also lower (84.1%; we note that this is not truly a measure of 362 
accuracy since these ‘ground-truth’ labels had low confidence). Indeed, overall the network’s 363 
concurrence versus human labels scaled with the confidence of the human label (Fig. 3G). 364 
 365 
We carefully examined the subset of ROIs where the network had high confidence (>75%), but 366 
humans had either low-confidence or entered no label at all. This was quite a large set of ROIs: 367 
AutoCellLabeler identified significantly more high confidence neurons (119/animal) than the 368 
original human labelers (83/animal), and this could conceivably reflect a highly accurate pool of 369 
labels exceeding human performance. To determine whether this was the case, we obtained new 370 
human labels (by different human labelers) for a random subset of these neurons. Whereas some 371 
human labels remained low-confidence, others were now labeled with high confidence (20.9% of 372 
this group of ROIs). The new human labelers also labeled neurons that were originally labeled 373 
with high confidence so that we could compare the network’s performance on relabeled data 374 
where the original data was unlabeled, low confidence, or high confidence. AutoCellLabeler’s 375 
performance on all three groups was similar (88%, 86.1%, and 92.1%, respectively), which was 376 
comparable to the accuracy of humans relabeling data relative to the original high-confidence 377 
labels (92.3%). The slightly lower accuracy on these re-labeled data is likely due to the human 378 
labeling of the original training, validation, and testing data being highly vetted and thoroughly 379 
double-checked, whereas the re-labeling that we performed just for this analysis was done in a 380 
single pass. Overall, these analyses indicate that the high-confidence network labels (119/animal) 381 
have similar accuracy regardless of whether the original data had been labeled by humans as un-382 
labelable, low confidence, or high confidence. This indicates that AutoCellLabeler can 383 
confidently label more neurons per dataset than individual human labelers. 384 
 385 
We also split out model performance by cell type. This largely revealed similar trends. Model 386 
labeling accuracy and confidence were variable among the neuron types, with highest accuracy 387 
and confidence for the cell types where there were higher confidence human labels and a higher 388 
frequency of human labels (Fig. 3K). For the labels where there were high confidence network 389 
and human labels, we generated a confusion matrix to see if AutoCellLabeler’s mistakes had 390 
recurring trends (Extended Data Fig. 2B). While mistakes of this type were very rare, we 391 
observed that the ones that occurred could mostly be categorized as either mislabeling a gut 392 
granule as the neuron RMG, or mislabeling the dorsal/ventral categorization of the neurons IL1 393 
and IL2 (e.g.: mislabeling IL2D as IL2). Together, these categories accounted for 50% of all 394 
AutoCellLabeler’s mistakes. We also observed that across cell types, AutoCellLabeler’s 395 
confidence was highly correlated with human confidence (Extended Data Fig. 2C), suggesting 396 
that the main limitations of model accuracy are due to human labeling accuracy and confidence.  397 
 398 
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To provide better insights into which network features were critical for its performance, we 399 
trained additional networks lacking some of AutoCellLabeler’s key features. To evaluate these 400 
networks, we considered both the number of high confidence labels assigned by AutoCellLabeler 401 
and the accuracy of those labels measured against high-confidence human labels. Surprisingly, a 402 
network that was trained with only standard image augmentations (i.e. lacking the custom 403 
augmentation to bend the images in a manner that approximates a worm head bend) had similar 404 
performance (Fig. 3I). However, a network that was trained without a pixel-weighting scheme 405 
(i.e. where all pixels were weighted equally) provided far fewer high-confidence labels. This 406 
suggests that devising strategies for pixel weighting is critical for model performance, though our 407 
custom augmentation was not important. Interestingly, all trained networks had similar accuracy 408 
(Fig. 3J) on their high-confidence labels, suggesting that the network architecture in all cases is 409 
able to accurately assess its confidence. 410 
 411 
Automated annotation of C. elegans neurons from fewer fluorescent labels and in different 412 
strains 413 
We examined whether the full group of fluorophores were critical for AutoCellLabeler 414 
performance. This is a relevant question because (i) it is laborious to make, inject, and annotate a 415 
large number of plasmids driving fluorophore expression, and (ii) the large number of plasmids 416 
in the NeuroPAL strain has been noted to adversely impact the animals’ growth and 417 
behavior35,40,48. To test whether fewer fluorescent labels could still facilitate automatic labeling, 418 
we trained four additional networks: one that only received the pan-neuronal tagRFP image as 419 
input, and three that received pan-neuronal tagRFP plus a single other fluorescent channel 420 
(CyOFP, tag-mBFP2, or mNeptune). As we still had the ground-truth labels based on humans 421 
viewing the full set of fluorophores, the supervised labels were identical to those supplied to the 422 
full network. 423 
 424 
We evaluated the performance of these models by quantifying the number of high-confidence 425 
labels that each network provided in each testing dataset (Fig. 4A) and the accuracy of these  426 
labels measured against high-confidence human labels (Fig. 4B). We found that all four 427 
networks had attenuated performance relative to the full AutoCellLabeler network, which was 428 
almost entirely explainable by these networks having lower confidence in their labels, since 429 
network accuracy was always consistent with its confidence (Extended Data Fig. 3A). This 430 
means that labels from any version of the network can be treated equivalently, where the 431 
confidence of a given label can be taken as an indication of its accuracy. Additionally, of the four 432 
attenuated networks, the tagRFP+CyOFP network performance (107 neurons per animal labeled 433 
at 97.4% accuracy) was quite close to the full network in its performance. Given that there 434 
are >20 mTagBFP2 and mNeptune plasmids in the full NeuroPAL strain, these results raise the 435 
possibility that a smaller set of carefully chosen plasmids could permit training of a network with 436 
equal performance to the full network that we trained here. 437 
 438 
We did not expect the tagRFP-only network to perform well, since the task of labeling tagRFP-439 
only images is nearly impossible for humans. Surprisingly, this network still exhibited relatively 440 
high performance, with an average of 94 high-confidence neurons per animal and 94.8% 441 
accuracy on those neurons. On most neuron classes, it behaved nearly as well as the full network, 442 
though there are 10-20 neuron classes that it is much worse at labeling, such as ASG, IL1, and 443 
RMG (Fig. 4C). Since this network only requires the red channel fluorescence, it could in theory 444 
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be used directly on freely-moving data, which has only GCaMP and tagRFP channel data. 445 
Potentially, network performance could be increased by evaluating it on many different 446 
timepoints from the freely-moving data to allow it to see the worm in many different postures. 447 
Since the tagRFP-only network was trained only on high-SNR images collected from 448 
immobilized animals, we first checked that the network was able to generalize outside its 449 
training distribution to single images with lower SNR (example images in Extended Data Fig. 450 
3B). It was able to label 79 high-confidence neurons per animal at 95.2% accuracy on the lower 451 
SNR images (Fig. 4A-B, right). We then investigated whether allowing the network to access 452 
different postures of the same animal improved its accuracy. Specifically, we evaluated the 453 
tagRFP-only network on 100 randomly-selected timepoints in the freely-moving data of each 454 
animal (example images in Extended Data Fig. 3B). We then related these 100 network labels to 455 
the human labels, which could be easily determined, since ANTSUN registers free-moving 456 
images back to the immobilized NeuroPAL images that had been labeled by humans. We 457 
averaged the 100 network labels to obtain the most likely network label for each neuron, as well 458 
as the average confidence for that label. To properly compare network versions, we determined 459 
how many neurons could be labeled at any given target labeling accuracy – for example, how 460 
many neurons the network can label and still achieve 95% accuracy (Fig. 4D; changing the 461 
threshold network confidence value to include a given label allowed us to determine these full 462 
curves). This analysis revealed that averaging network labels across the 100 timepoints improved 463 
network performance, though only modestly. These results suggest that single color labels can be 464 
used to train networks to a high level of performance, but additional fluorescence channels 465 
further improve performance. 466 
 467 
The strong performance of the tagRFP-only network on out-of-domain lower SNR images 468 
suggest an impressive ability of the AutoCellLabeler network to generalize across different 469 
modalities of data. This raised the possibility that it may be possible to use this network 470 
architecture to build a foundation model of C. elegans neuron annotation that works across 471 
strains and imaging conditions. As a first step to explore this, we investigated to what extent the 472 
tagRFP-only network could generalize to other strains of C. elegans besides the NeuroPAL 473 
strain. We used our previously-described SWF415 strain, which contains pan-neuronal NLS-474 
GCaMP7F, pan-neuronal NLS-mNeptune2.5, and sparse tagRFP expression35. Notably, the pan-475 
neuronal promoter utilized in this strain for NLS-mNeptune expression (Primb-1) is distinct from 476 
the pan-neuronal promoter that drives NLS-tagRFP expression in NeuroPAL (a synthetic 477 
promoter). Since humans do not know how to label neurons in SWF415, we did a more limited 478 
analysis by analyzing network labels for a subset of neurons that have highly reliable activity 479 
dynamics with respect to behavior (AVA, AVE, RIM, and AIB encode reverse locomotion; RIB, 480 
AVB, RID, and RME encode forward locomotion; SMDD encodes dorsal head curvature; and 481 
SMDV and RIV encode ventral head curvature)35,49–56. Specifically, we asked whether neurons 482 
labeled with high confidence by the network had the behavior encoding properties typical of the 483 
neuron, assessed via analysis of the GCaMP traces from that neuron. Our previously-described 484 
CePNEM model35 was used to determine whether each labeled neuron encoded forward/reverse 485 
locomotion or dorsal/ventral head curvature. The network provided high-confidence labels for an 486 
average of 7.4/21 of these neurons per animal, and the encoding properties of these neurons 487 
matched expectations 68% of the time (randomly labeled neurons had a match of 19%). 488 
However, it was possible for the network to (i) incorrectly label a neuron as another neuron that 489 
happened to have the same encoding; or (ii) correctly label a neuron that CePNEM lacked 490 
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statistical power to declare an encoding for. We accounted for these effects via simulations (see 491 
Methods), which estimated that the actual labeling accuracy of the network on SWF415 was 492 
69% (Fig. 4E). This is substantially lower than this network’s accuracy on similar images from 493 
the NeuroPAL strain (i.e. the strain used to train the network), where an average of 12.5 of these 494 
neurons per animal were labeled with 97.1% accuracy. Nevertheless, this analysis indicates that 495 
AutoCellLabeler has a reasonable ability to generalize to strains with different genetic drivers 496 
and fluorophores, suggesting that in the future it may be worthwhile to pursue building a 497 
foundation model that labels C. elegans neurons across many strains. 498 
 499 
A neural network (CellDiscoveryNet) that facilitates unsupervised discovery of >100 cell 500 
types by aligning data across animals 501 
 502 
Annotation of cell types via supervised learning is fundamentally limited by prior knowledge and 503 
humans’ ability to label multi-spectral imaging data. In principle, unsupervised approaches that 504 
can automatically identify stereotyped cell types would be preferable. Thus, we next sought to 505 
train a neural network to perform unsupervised discovery of the cell types of C. elegans nervous 506 
system (Fig. 5A). If successful, these approaches could be useful for labeling of mutant 507 
genotypes, new permutations of NeuroPAL, or even related species. In addition, such an 508 
approach would be useful in more complex animals that do not yet have complete catalogs of 509 
cell types. 510 
 511 
To facilitate unsupervised cell type discovery, we trained a network to register different animals’ 512 
multi-spectral NeuroPAL imaging data to one another. Successful alignment of cells across all 513 
recorded animals would amount to unsupervised cell type annotation, since the cells that align 514 
across animals would be the same cell type identified in different animals. The architecture of 515 
this network was similar to BrainAlignNet, but the training data here consisted of pairs of 4-color 516 
NeuroPAL images from two different animals and the network was tasked with aligning all four 517 
fluorescent channels (Fig. 5B). No cell type positions (i.e. centroids) or neuronal identities were 518 
provided to the network during training. Regularization and augmentation were similar to that of 519 
BrainAlignNet (see Methods). Training and validation data were comprised of 91 animals’ 520 
datasets, which gave rise to 3285 unique pairs for alignment; 11 animals were withheld for 521 
testing (the same test set as for AutoCellLabeler). The validation loss plateaued after 600 epochs 522 
(Fig. 5C) and we characterized the network that had the minimum validation loss (at epoch 596). 523 
In the analyses below, we characterize performance on training data and withheld testing data, 524 
describing any differences. We note that, in contrast to the networks described above, high 525 
performance on training data is still useful in this case, since the only criterion for success in 526 
unsupervised learning is successful alignment (i.e. even if all data need to be used for training to 527 
do so). Strong performance on testing data is still more desirable though, since it is less efficient 528 
to train different networks over and over as new data are incorporated into the full dataset. 529 
 530 
We first characterized the ability of this Unsupervised Cell Discovery Network 531 
(CellDiscoveryNet) to align images across different animals. Image alignment was reasonably 532 
high for all four fluorescent NeuroPAL channels with a median NCC of 0.80 overall (Fig. 5D). 533 
Alignment accuracy was nearly equivalent in training and testing data (Fig. 5D). We also 534 
examined how well the centroid positions of defined cell types were aligned, utilizing our prior 535 
knowledge of neurons’ locations – i.e. the human labels (Fig. 5E). We computed this metric only 536 
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on cell types that were identified with high confidence in both of the images of a given 537 
registration problem. The median centroid distance was 7.2 pixels, with similar performance on 538 
training and testing data. This was initially rather disappointing, as it suggested that the majority 539 
of neurons were not being placed at their correct locations. However, we observed two important 540 
properties of the centroid alignments. First, the distribution of centroid distances was bimodal – 541 
the 20th percentile centroid distance was only 1.4 pixels, which corresponds to a correct neuron 542 
alignment. Second, the median centroid distance decreased to 3.3 for registration problems with 543 
high (> 90th percentile = 0.85) NCC scores on the images. Together, these observations suggest 544 
that CellDiscoveryNet correctly aligns neurons some of the time. 545 
 546 
We next sought to differentiate the neuron alignments where CellDiscoveryNet was correct from 547 
those where it was incorrect. Effectively, we wanted to treat CellDiscoveryNet as a hypothesis 548 
generator for which neurons might be the same, and then algorithmically separate good 549 
hypotheses from bad ones, stitching together the accurate hypotheses into a full set of neuron 550 
alignments. To accomplish this, we adapted our ANTSUN pipeline (described in Fig. 2) to use 551 
CellDiscoveryNet instead of BrainAlignNet. This modified ANTSUN 2U (Unsupervised) takes 552 
as input multi-spectral data from many animals instead of monochrome images from different 553 
time points of the same animal. This approach then allows us to effectively cluster neurons that 554 
might be the same neuron found in different animals. Thus, we ran CellDiscoveryNet on pairs of 555 
images and used the resulting DDFs to align the corresponding segmented neuron ROIs. We then 556 
constructed a N-by-N matrix where N is all segmented neurons detected across all of the 557 
NeuroPAL images (i.e. all neurons in all animals). Entries in the matrix are zero if the two 558 
neurons were in an image pair that was never registered or if the two neurons did not overlap at 559 
all in the registered image pair. Otherwise, a heuristic value indicating the likelihood that the 560 
neurons are the same was entered into the matrix. This heuristic included the same information 561 
as in ANTSUN 2.0 (described above), such as registration quality and ROI position similarity. 562 
The only difference was that the heuristic for tagRFP brightness similarity was replaced with a 563 
heuristic for 4-channel color similarity (see Methods). Custom hierarchical clustering of the rows 564 
of this matrix then identified groups of ROIs hypothesized to be the same cell type identified in 565 
different animals.  566 
 567 
To determine the performance of this unsupervised cell type discovery approach, we quantified 568 
both the number of cell types that were discovered (i.e. number of clusters) and the accuracy of 569 
cell type labeling within each cluster. Here, accuracy was computed by first determining the 570 
most frequent neuron label for each cell type, based on the human labels. We then determined 571 
the number of correct versus incorrect detections of this cell type for all cells that fell within the 572 
cluster, where a correct detection was defined to be when the human label for that cell matched 573 
the most frequent label for that cell’s cluster. The number of cell types identified and the labeling 574 
accuracy are directly related: more permissive clustering identifies more cell types, but at the 575 
cost of lower accuracy. A full curve revealing this tradeoff is shown in Fig. 5F (the parameter 𝑤! 576 
controls the restrictiveness of the clustering; see Methods). Based on this curve, we selected the 577 
clustering parameter 𝑤! = 10"# that identified 125 cell types with 93% labeling accuracy. Not 578 
every cell type is detected in every animal. On the testing data, the CellDiscoveryNet-powered 579 
ANTSUN 2U roughly matched human-level performance in terms of accuracy and number of 580 
neurons labeled per animal (Fig. 5G-H). However, it fell slightly short of AutoCellLabeler (Fig. 581 
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5G-H). Overall, this analysis reveals that CellDiscoveryNet facilitates unsupervised cell type 582 
discovery with a high level of performance, matching trained human labelers. 583 
 584 
We examined whether the accuracy of cell identification was different across cell types or across 585 
animals. Fig. 5I shows the accuracy of labeling for each cell type (see Extended Data Figure 4A 586 
for per-animal accuracy). Indeed, results were mixed: some cell types had highly accurate 587 
detections across animals (eg: OLQD and RME), whereas a smaller subset of cell types were 588 
detected with lower accuracy (eg: AIZ and ASG), and yet other cell types were harder to assess 589 
accuracy due to a smaller number of human labels (eg: AIM and I4). In addition, there were five 590 
clusters which did not contain a sufficient number of human-labeled ROIs to be given a cell type 591 
label (<3 cells in these clusters had matching human labels; these are labeled “NEW 1” through 592 
“NEW 5”). To examine which neurons these might correspond to, we examined the high-593 
confidence AutoCellLabeler labels for ROIs in these clusters. This produced enough labels to 594 
categorize four of these five clusters as SAAD, SMBD, VB02, and VB02. The repeated VB02 595 
label is likely an indication of under-clustering (ie: the two VB02 clusters should have been 596 
merged into the same cluster). The identity of the fifth cluster was unclear, as the ROIs in that 597 
cluster were not well labeled by either humans or AutoCellLabeler. 598 
 599 
Finally, we examined whether CellDiscoveryNet was able to label cells not detected via 600 
AutoCellLabeler. Specifically, we determined the fraction of the cells detected by 601 
CellDiscoveryNet that were labeled by AutoCellLabeler, which was 86%. The new unsupervised 602 
detections (the remaining 14%) included: new labels for cells that were otherwise well-labeled 603 
by AutoCellLabeler (e.g.: M3); the detection and labeling of several cell types that were 604 
uncommonly labeled by AutoCellLabeler (e.g.: RMEV); and the previously-mentioned cell type 605 
that could not be identified. This suggests that the unsupervised approach that we describe here is 606 
able to provide cell annotations that were not possible via human labeling or AutoCellLabeler. 607 
 608 
 609 
DISCUSSION 610 
 611 
Aligning and annotating the cell types that make up complex tissues remains a key challenge in 612 
computational image analysis. We trained a series of deep neural networks that allow for 613 
automated non-rigid registration and neuron identification in the context of brain-wide calcium 614 
imaging in freely-moving C. elegans. This provides an appealing test case for the development 615 
of such tools. C. elegans movement creates major challenges with tissue deformation and the 616 
animal has >100 defined cell types in its nervous system. We describe BrainAlignNet, which can 617 
perform non-rigid registration of the neurons of the C. elegans head, allowing for 99.6% 618 
accuracy in aligning individual neurons. We also describe AutoCellLabeler, which can 619 
automatically label >100 neuronal cell types with 98% accuracy, exceeding the performance of 620 
individual human labelers by aggregating their knowledge. Finally, CellDiscoveryNet aligns data 621 
across animals to perform unsupervised discovery of stereotyped cell types, identifying >100 cell 622 
types of the C. elegans nervous system from unlabeled data. These tools should be useful for a 623 
wide range of applications in C. elegans and should be straightforward to generalize to analyses 624 
of other complex tissues. 625 
 626 
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Our newly-described network for freely-moving worm registration on average aligns neurons 627 
with single pixel-level accuracy. Incorporating the network into a full image processing pipeline 628 
indicates that it allows us to link neurons across time with 99.6% accuracy. Training a network to 629 
achieve this high performance highlighted a series of general challenges. For example, our 630 
attempt to train the network in a fully unsupervised manner (i.e. to simply align two images with 631 
no further information) failed. While the resulting networks aligned RFP images of testing data 632 
nearly perfectly, it turned out that the image transformations underlying this registration reflected 633 
a scrambling of pixels and that the network was not warping the images in the manner that the 634 
animal actually bends. We note that it was only possible to detect this failure mode through 635 
unique control datasets that we had available to us, namely a strain that also had GFP in a sparse 636 
subset of neurons and prior knowledge of ROI locations in the images. A semi-supervised 637 
training procedure that utilized information about ROI locations ultimately prevented this failure 638 
mode. While this approach is quite feasible for our use case, other types of datasets may not have 639 
additional features such as ROI centroids to serve as supervised labels. It is possible that image 640 
augmentation33 might be able to assist in such cases.  641 
 642 
Another limitation was that even with the semi-supervised approach, we were only able to train 643 
networks to register images from reasonably well initialized conditions. Specifically, we 644 
provided Euler-registered image pairs that were selected to have moderately similar head 645 
curvature (though we note that these examples still had fairly dramatic non-rigid deformations; 646 
see Figure 1). Solving this problem was sufficient to fully align neurons from freely-moving C. 647 
elegans brain-wide calcium imaging, since clustering could effectively be used to link identity 648 
across all timepoints even if our image registration only aligned a subset of the image pairs. Our 649 
attempts to train a network to register all timepoints to one another was unsuccessful, though a 650 
variety of approaches could conceivably improve upon this moving forward.  651 
 652 
The AutoCellLabeler network that we describe here now automates a task that previously 653 
required several hours of manual labeling per dataset. It achieves 98% accuracy in cell 654 
identification and labels more neurons per dataset than individual human labelers. This 655 
performance required a pixel weighting scheme where the network was trained to be especially 656 
sensitive to high-confidence labels of neurons that were not ubiquitously labeled by all human 657 
labelers. In other words, the network could aggregate knowledge across human labelers and 658 
example animals to achieve high performance. While the high performance of AutoCellLabeler 659 
is extremely useful from a practical point of view, we note that AutoCellLabeler still cannot label 660 
all ROIs in a given image, which would be the highest level of desirable performance. Our 661 
analyses suggest that it is currently bounded by human labeling of training data, which in turn is 662 
bounded by our NeuroPAL image quality and the ambiguity of labeling certain neurons in the 663 
NeuroPAL strain.  664 
 665 
While improvements in human labeling could improve performance of the network, this analysis 666 
also highlighted that it would be highly desirable to perform fully unsupervised cell labeling, 667 
where the cell types could be inferred and labeled in multispectral images even without any 668 
human labeling. To accomplish this, we developed CellDiscoveryNet, which aligns NeuroPAL 669 
images across animals. Together with a custom clustering approach, this enabled us to identify 670 
125 neuron classes, labeling them with 93% accuracy in a completely unsupervised manner. This 671 
approach could be very useful within the C. elegans system, since it is extremely time 672 
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consuming to perform human labeling and it is conceivable that the NeuroPAL labels may 673 
change in different genotypes or if the NeuroPAL transgene is modified. Beyond C. elegans, 674 
these unsupervised approaches should be useful, since the vast majority of tissues in larger 675 
animals do not yet have a full catalog of cell types and, therefore, would greatly benefit from 676 
unsupervised discovery. In this spirit, other recent studies have started to develop approaches for 677 
unsupervised labeling of imaging data11,57,58, though these efforts were not aimed at identifying 678 
the full set of cellular subtypes (>100) in individual images, which was the chief objective of 679 
CellDiscoveryNet. 680 
 681 
We also note the importance of our post-processing clustering approach to improving the 682 
robustness of neural networks in solving these image registration problems. BrainAlignNet and 683 
especially CellDiscoveryNet will sometimes generate incorrect solutions to individual neuron 684 
mappings between a single pair of images. Relying solely on the network output for an 685 
individual pair of images would thus be prone to inaccuracy. However, by treating the networks 686 
as hypothesis generators across many images and using clustering to consider more likely 687 
hypotheses first, we can generate highly accurate linkages across all images. We speculate that 688 
this strategy might generalize across disciplines to many problems where it is possible to use 689 
deep neural networks to generate large numbers of hypotheses whose likelihoods can be 690 
heuristically evaluated. 691 
 692 
We trained alternative versions of AutoCellLabeler with subsets of the spectral information in 693 
NeuroPAL, which provides some insights into the possibility of performing high-accuracy neural 694 
identification in strains with less fluorophores than NeuroPAL. On the one hand, all networks 695 
that were trained with fewer than the full set of 4 fluorescent channels exhibited poorer 696 
performance. However, it is notable that the network trained with only pan-neuronal RFP still 697 
achieved 95% accuracy in labeling 94 neurons per image. It is important to note that this is the 698 
performance of a network that was only trained to evaluate a single static image. It is 699 
conceivable that there could be an improvement in performance if the network were trained on 700 
pan-neuronal RFP images from all freely-moving timepoints, since this might allow the network 701 
to infer identity based on the full range of movement and deformations that a given neuron 702 
exhibits, which is quite stereotyped36–40. The fact that AutoCellLabeler exhibited surprisingly 703 
good out-of-domain performance on images with different SNRs and on different strains 704 
suggests that it may also be possible to improve performance across strains by building a 705 
foundation model similar to AutoCellLabeler that has been specifically engineered to solve the 706 
general task of labeling the cell types of the C. elegans brain in a wide range of images and 707 
strains (data are starting to be aggregated into data repositories42). Future efforts should be able 708 
to build upon the tools described here to lead to these types of improvements. 709 
 710 
It should also be possible to combine the tools that we describe here to great effect. For example, 711 
the unsupervised cell labels from CellDiscoveryNet could be used to train AutoCellLabeler in 712 
order to obtain more unsupervised labels at higher accuracy. Moreover, this process could 713 
potentially be multiplexed to achieve better cell annotation from TagRFP only. For example, 714 
multiple multi-spectral transgenic lines like NeuroPAL could be subject to CellDiscoveryNet 715 
labeling and fed into parallel AutoCellLabeler variants that only use the red channel for 716 
prediction. These networks could then be combined to potentially achieve high-performance cell 717 
identification from TagRFP only, utilizing knowledge gained from multiple multi-spectral lines. 718 
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 719 
These approaches for registering and annotating cells in dense tissues should be straightforward 720 
to generalize to other species. For example, variants of BrainAlignNet could be trained to 721 
facilitate alignment of tissue sections or to register imaging data onto a common anatomical 722 
reference atlas. Our results suggest that training these networks on subsets of data with labeled 723 
feature points, such as cell centroids (i.e. the semi-supervised approach we use here), will 724 
facilitate more accurate solutions that, after training, can still be applied to datasets without any 725 
labeled feature points. In addition, variants of AutoCellLabeler could be trained on any multi-726 
color cellular imaging data with manual labels. A pixel-wise labeling approach, together with 727 
appropriate pixel weighting during training, should be generally useful to build models for 728 
automatic cell labeling in a range of different tissues and animals. Finally, models similar to 729 
CellDiscoveryNet could be broadly useful to identify previously uncharacterized cell types in 730 
many tissues. It is conceivable that hybrid or iterative versions of AutoCellLabeler and 731 
CellDiscoveryNet could lead to even higher performance cell type discovery and labeling. 732 
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 750 
MATERIALS AND METHODS 751 
 752 
C. elegans Strains and Genetics 753 
 754 
All data were collected from one-day old adult hermaphrodite C. elegans animals raised at 22C 755 
on standard nematode growth medium (NGM) plates.  756 
 757 
For the GCaMP-expressing animals without NeuroPAL, two transgenes were present: (1) 758 
flvIs17: tag-168::NLS-GCaMP7F + NLS-tagRFPt expressed under a small set of cell-specific 759 
promoters: gcy-28.d, ceh-36, inx-1, mod-1, tph-1(short), gcy-5, gcy-7; and (2) flvIs18: tag-760 
168::NLS-mNeptune2.5. This resulting strain SWF415, has been previously characterized35. 761 
 762 
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For the GCaMP-expressing animals with NeuroPAL, two transgenes were present in the strain: 763 
(1) flvIs17: described above; and (2) otIs670: low-brightness NeuroPAL. This resulting strain, 764 
named SWF702, has been previously characterized35. 765 
 766 
The animals with eat-4::NLS-GFP and tag-168::NLS-GFP were also previously described35. As 767 
is described in the strain list, tag-168::NLS-mNeptune2.5 was also co-injected with each of these 768 
plasmids to generate the two strains: SWF360 (eat-4::NLS-GFP; tag-168::NLS-mNeptune2.5) 769 
and SWF467 (tag-168::NLS-GFP; tag-168::NLS-mNeptune2.5).  770 
 771 
We provide here a list of these four strains: 772 
 773 
SWF415 flvIs17[tag-168::NLS-GCaMP7F, gcy-28.d::NLS-tag-RFPt, ceh-36:NLS-tag-774 
RFPt, inx-1::tag-RFPt, mod-1::tag-RFPt, tph-1(short)::NLS-tag-RFPt, gcy-5::NLS-tag-775 
RFPt, gcy-7::NLS-tag-RFPt]; flvIs18[tag-168::NLS-mNeptune2.5]; lite-1(ce314); gur-776 
3(ok2245) 777 
 778 
SWF702 flvIs17; otIs670 [low-brightness NeuroPAL]; lite-1(ce314); gur-3(ok2245) 779 
 780 
SWF360 flvEx450[eat-4::NLS-GFP, tag-168::NLS-mNeptune2.5]; lite-1(ce314); gur-3(ok2245) 781 
 782 
SWF467 flvEx451[tag-168::NLS-GFP, tag-168::NLS-mNeptune2.5]; lite-1(ce314); gur-783 
3(ok2245) 784 
 785 
Microscope and Recording Conditions 786 
 787 

Data used to train and evaluate the models include previously-published datasets35,46,59 788 
and newly-collected data. These animals were recorded under similar recording conditions to 789 
those described in our previous study35. There were two types of datasets collected, relevant to 790 
this study: freely-moving GCaMP/TagRFP data, and immobilized NeuroPAL data.  791 

Briefly, all neural data (free-moving and NeuroPAL) were acquired on a dual light-path 792 
microscope that was previously described35. The light path used to image GCaMP, mNeptune, 793 
and the fluorophores in NeuroPAL at single cell resolution is an Andor spinning disk confocal 794 
system with Nikon ECLIPSE Ti microscope. Light supplied from a 150 mW 488 nm laser, 50 795 
mW 560 nm laser, 100 mW 405 nm laser, or 140 mW 637 nm laser passes through a 5000 rpm 796 
Yokogawa CSU-X1 spinning disk unit with a Borealis upgrade (with a dual-camera 797 
configuration). A 40x water immersion objective (CFI APO LWD 40X WI 1.15 NA LAMBDA 798 
S, Nikon) with an objective piezo (P-726 PIFOC, Physik Instrumente (PI)) was used to image the 799 
volume of the worm’s head (a Newport NP0140SG objective piezo was used in a subset of the 800 
recordings). A custom quad dichroic mirror directed light emitted from the specimen to two 801 
separate sCMOS cameras (Zyla 4.2 PLUS sCMOS, Andor), which had in-line emission filters 802 
(525/50 for GCaMP/GFP, and 570 longpass for tagRFP/mNeptune in freely-moving recordings; 803 
NeuroPAL filters described below). Data was collected at a volume rate of 1.7 Hz (1.4 Hz for the 804 
datasets acquired with the Newport piezo). 805 

For recordings, L4 worms were picked 18-22 hours before the imaging experiment to a 806 
new NGM agar plate seeded with OP50 to ensure that we recorded one day-old adult animals. 807 
Animals were recorded a thin, flat NGM agar pad (2.5cm x 1.8cm x 0.8mm). On the 4 corners of 808 
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the agar pad, we placed a single layer of microbeads with a diameter of 80um to alleviate the 809 
pressure of the coverslip (#1.5) on the worm. Animals were transferred to the agar pad in a drop 810 
of M9, after which the coverslip was added. 811 

For NeuroPAL data collection, animals were immobilized via cooling, after which multi-812 
spectral information was captured. For cooling, the slide was mounted with a thermoelectric 813 
cooling element attached to it, set to cool the agar temperature to 1 °C. A closed-loop 814 
temperature controller (TEC200C, Thorlabs) with a micro-thermistor (SC30F103A, Amphenol) 815 
embedded in the agar kept the agar temperature at the 1 °C set point. Once the temperature 816 
reached the set point, we waited 5 minutes for the worm to be fully immobilized before imaging.  817 

We obtained a series of images from each recorded animal while the animal was 818 
immobilized (this has been previously described35): 819 

(1-3) Spectrally isolated images of mTagBFP2, CyOFP1, and mNeptune2.5. We excited 820 
CyOFP1 using the 488nm laser at 32% intensity under a 585/40 bandpass filter. mNeptune2.5 821 
was recorded next using a 637nm laser at 48% intensity under a 655LP-TRF filter, in order to not 822 
contaminate this recording with TagRFP-T emission. Finally, mTagBFP2 was isolated using a 823 
405nm laser at 27% intensity under a 447/60 bandpass filter.  824 

(4) An image with TagRFP-T, CyOFP1, and mNeptune2.5 (all of the “red” markers) in 825 
one channel, and gCaMP7f in the other channel. As described in our previous study, this image 826 
was used for neuronal segmentation and registration to both the freely moving recording and 827 
individually isolated marker images. We excited TagRFP-T and mNeptune2.5 via 561nm laser at 828 
15% intensity and CyOFP1 and gCaMP6f via 488nm laser at 17% intensity. TagRFP-T, 829 
mNeptune2.5, and CyOFP1 were imaged with a 570LP filter and gCaMP6f was isolated using a 830 
525/50 bandpass filter.  831 

All isolated images were recorded for 60 timepoints. We increased the signal to noise 832 
ratio for each of the images by first registering all timepoints within a recording to one another 833 
and then averaging the transformed images. For manual labeling of these datasets, we created a 834 
composite, 3-dimensional RGB image by setting the mTagBFP2 image to blue, CyOFP1 image 835 
to green, and mNeptune2.5 image to red as done by Yemini et al. (2021) and manually adjusting 836 
the intensity of each channel to optimally match their manual.  837 
 838 
Availability of Code 839 
 840 
All code is freely and publicly available (use main/master branches unless otherwise specified): 841 
 842 

• BrainAlignNet: https://github.com/flavell-lab/BrainAlignNet and 843 
https://github.com/flavell-lab/DeepReg (main branch) 844 

• GPU-accelerated Euler registration: https://github.com/flavell-lab/euler_gpu 845 

• ANTSUN 2.0: https://github.com/flavell-lab/ANTSUN (branch v2.1.0); see also 846 
https://github.com/flavell-lab/flv-c-setup and https://github.com/flavell-847 
lab/FlavellPkg.jl/blob/master/src/ANTSUN.jl for auxiliary package installation. 848 

• AutoCellLabeler: https://github.com/flavell-lab/pytorch-3dunet and 849 
https://github.com/flavell-lab/AutoCellLabeler 850 

• CellDiscoveryNet: https://github.com/flavell-lab/DeepReg (multicolor branch) 851 

• ANTSUN 2U: https://github.com/flavell-lab/ANTSUN-Unsupervised 852 
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 853 
BrainAlignNet 854 
 855 
Network architecture 856 
BrainAlignNet’s architecture is derived from the DeepReg software package, which uses a 857 
variation of a 3-D U-Net architecture termed a LocalNet44,45. BrainAlignNet first has a 858 
concatenation layer that concatenates the moving and fixed images together along a new, channel 859 
dimension. The resulting 284 × 120 × 64 × 2 image is then passed as input to the LocalNet, 860 
which outputs a 284 × 120 × 64 × 3 dense displacement field (DDF). The DDF defines a 861 
coordinate transformation from fixed image coordinates to moving image coordinates, relative to 862 
the fixed image coordinate system. So, for instance, if 𝐷𝐷𝐹[𝑥, 𝑦, 𝑧] = (Δ𝑥, Δ𝑦, Δ𝑧), it means that 863 
the coordinates (𝑥, 𝑦, 𝑧) in the fixed image are mapped to the coordinates (𝑥 + Δ𝑥, 𝑦 + Δ𝑦, 𝑧 +864 
Δ𝑧) in the moving image. The network has a final warping layer that applies the DDF to 865 
transform the moving image into a predicted fixed image whose pixel at location (𝑥, 𝑦, 𝑧) 866 
contains the moving image pixel at location (𝑥, 𝑦, 𝑧) + 𝐷𝐷𝐹[𝑥, 𝑦, 𝑧]. It also has another final 867 
warping layer that transforms the fixed image centroids (𝑥, 𝑦, 𝑧) into predicted moving image 868 
centroids (𝑥, 𝑦, 𝑧) + 𝐷𝐷𝐹[𝑥, 𝑦, 𝑧]. The network’s loss function causes it to seek to minimize the 869 
difference between its predictions and the corresponding input data. 870 
 871 
The LocalNet is at its core a 3-D U-Net with an additional output layer that receives inputs from 872 
multiple output levels. In more detail, it has 3 input levels and 3 output levels, with 16 ⋅ 2$ 873 
feature channels at the 𝑖th level for 𝑖 ∈ {0,1,2}. It contains an encoder block mapping the input to 874 
level 0, followed by two more encoder blocks mapping input level 𝑖 to level 𝑖 + 1 for 𝑖 ∈ {0,1}. 875 
Each of these three encoder blocks contains a convolutional block, a residual convolutional 876 
block, and a 2 × 2 × 2 max-pool layer. The convolutional block consists of a 3-D convolutional 877 
layer with kernel size 3 that doubles the number of feature channels, followed by a batch 878 
normalization layer, followed by a ReLU activation function. The residual convolutional block 879 
consists of two convolutional blocks in sequence, except that the input (to the residual 880 
convolutional block) is added to the output of the second convolutional block right before its 881 
ReLU activation function. The bottom block comes after the encoder block at level 2, mapping 882 
input level 2 to output level 2. It has the same architecture as a single convolutional block; 883 
notably, it does not contain the max-pool layer. 884 
 885 
There are three decoder blocks receiving inputs from the three encoder blocks described above. 886 
The first two decoder blocks map output level 𝑖 + 1 to output level 𝑖 for 𝑖 ∈ {1,0}; the third one 887 
maps output level 0 to the preliminary output with the same (𝑥, 𝑦, 𝑧) dimensions as the input. 888 
Each decoding block consists of an upsampling block, a skip-connection layer, a convolutional 889 
block, and a residual convolutional block. The upsampling block contains a transposed 3D 890 
convolutional layer with kernel size 3 that halves the number of feature channels and an image 891 
resizing layer (run independently on the upsampling block’s input) using bilinear interpolation to 892 
double each dimension of the image. The output of the resizing layer is then split into two equal 893 
pieces along the channel axis and summed, and then added to the output of the transposed 894 
convolutional layer. The skip-connection layer appends the output of the mirrored encoder block 895 
𝑖 (for the third decoder block, this corresponds the first encoder block) right before that encoder 896 
block’s max pool layer. The skip-connection layer appends this output to the channel dimension, 897 
doubling its size. The convolutional and residual convolutional blocks are identical to those in 898 
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the encoding block, except that the convolutional block halves the number of input channels 899 
instead of doubling it. 900 
 901 
Finally, there is the output layer. It takes as input the output of the bottom block, as well as the 902 
output of every decoder block. To each of these inputs, it applies a 3D convolutional layer that 903 
outputs exactly 3 channels, followed by an upsampling layer that uses bilinear interpolation to 904 
increase the dimensions to the size of the original input images. It then averages together all of 905 
these images to compute the final 284 × 120 × 64 × 3 DDF. 906 
 907 
Preprocessing 908 
To train and validate a registration network that aligns neurons across time series in freely-909 
moving C. elegans, we took several steps to prepare the calcium imaging datasets with images 910 
and their corresponding centroids. The preprocessing procedure consisted of (i) selecting two 911 
different time points from a single video (fixed and moving time points) at which to obtain RFP 912 
images (all images given to the network are from the red channel, which contains the signal from 913 
NLS-TagRFP) and neuron centroids; (ii) cropping all RFP images to a consistent size; (iii) 914 
performing Euler registration (translation and rotation) to align neurons from the image at the 915 
moving time point (moving image) to the image at the fixed time point (fixed image); (iv) 916 
creating image centroids for the network, which consist of matched lists of centroid positions of 917 
all the neurons in both the fixed and moving images.  918 
 919 
(i) Selection of registration problems. 920 
We refer to the task of solving the transformation function that aligns neurons from the moving 921 
image to the fixed image as a registration problem. We selected our registration problems based 922 
on previously constructed35 image registration graphs using ANTSUN 1.4. In these registration 923 
graphs, the time points of a single calcium imaging recording served as vertices. An edge 924 
between two time points indicates a registration problem that we will attempt to solve. Edges 925 
were preferentially created between time points with higher worm posture similarities. 926 
 In ANTSUN 1.4, we selected approximately 13,000 pairs of time points (fixed and 927 
moving) per video that had sufficiently high worm posture similarity. These registration 928 
problems were solved by gradient descent using our old image processing pipeline, and 929 
ANTSUN clustering yielded linked neuron ROIs across frames that were the basis of 930 
constructing calcium traces35. To train BrainAlignNet here, we randomly sampled about 100 931 
problems across a total of 57 animals, ultimately compiling 5,176 registration problems for 932 
training (some registration problems were discarded during subsequent preprocessing steps). To 933 
prepare the validation datasets, we sampled 1,466 problems across 22 animals. Testing data was 934 
447 problems from 5 animals. 935 
 936 
(ii) Cropping. 937 
The registration network requires all 3D image volumes in training, validation, and testing to be 938 
of the same size. Therefore, a crucial step in preprocessing was to crop or pad the images along 939 
the x, y, z dimensions to a consistent size of (284, 120, 64). Before reshaping the images, we first 940 
subtracted the median pixel value from each image (both fixed and moving) and set the negative 941 
pixels to zero. Then, we either cropped or padded with zeros around the centers of mass of these 942 
images to make the x dimension 284, the y dimension 120, and the z dimension 64. 943 
 944 
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(iii) Euler registration. 945 
Through experimentation with various settings of the network, we have found that it is difficult 946 
for the network to learn large rotations and translations at the same time as smaller nonlinear 947 
deformations. Euler registration is far more computationally tractable than nonlinear 948 
deformation, so we solved Euler registration for the images before providing them to the 949 
network. In Euler registration, we rotate or translate the moving images by a certain amount, 950 
aiming to maximize their normalized cross-correlation (NCC) with the fixed image. The optimal 951 
parameters of translation and rotation that resulted in the highest NCC were determined using a 952 
brute-force, GPU-accelerated parameter grid search. To further accelerate the grid search, we 953 
projected the fixed and moving images onto the x-y plane using a maximum-intensity projection 954 
along the z-axis. We also downsampled the fixed and moving images by a factor of 4 after the z 955 
maximal projection. The best parameters identified for transforming the projected images were 956 
then applied to each z-slice to transform the entire 3D image. This approach was feasible because 957 
the vast majority of worm movement occurs along the x-y axes. 958 
 959 
(iv) Creating image centroids. 960 
We obtained the neuronal ROI images for both the fixed and moving RFP images, designating 961 
them as the fixed and moving ROI images respectively. The full sets of ROIs in each image were 962 
obtained using ANTSUN 1.4’s image segmentation and watershedding functions. ROI images 963 
were them constructed as follows. Each pixel in an ROI image contains an index value: 0 for 964 
background, or a positive integer for a neuron. All pixels belonging to a specific neuron have the 965 
same index, and pixels belonging to any other neuron have a different index. Since the ROI 966 
images are created independently at each time point, their neuronal indices are not a priori 967 
consistent across time points. Therefore, we used previous runs of ANTSUN 1.4 to link the ROI 968 
identities across time points, and generated new ROI images with consistent indices across time 969 
points – for example, all pixels with value 6 in one time point correspond to the same neuron as 970 
pixels with value 6 in any other time point. We deleted any ROIs with indices that were not 971 
present in both the moving and fixed images. 972 
 973 

We then cropped these ROI images to the same size and subjected them to Euler 974 
transformations using the same parameters as their corresponding fixed and moving RFP images. 975 
Next, we computed the centroids of each neuron index in the resulting moving and fixed ROI 976 
images. The centroid was defined to be the mean x, y, and z coordinates of all pixels of a given 977 
ROI. We stored these centroids as two lists of equal length (typically, around 110). Note that 978 
these lists are now the matched positions of neurons in the fixed and moving images. 979 
 980 

Since the network expects image centroids to be of the same size, all neuronal centroids 981 
in the fixed and moving images were padded and aggregated into arrays of shape (200, 3), 982 
ensuring the same ordering of neurons. The extra entries that do not contain neurons are filled 983 
with (-1, -1, -1) to make the total number of neurons equal to 200. We designate the neuronal 984 
centroid positions in the fixed and moving ROI images as fixed and moving centroids, 985 
respectively. 986 
 987 
Loss functions 988 
Our main custom modifications to the DeepReg network focus on the design of the loss function. 989 
In particular, we implemented a new supervised centroid alignment loss component and new 990 
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regularization loss sub-components. Overall, the loss function consists of three major 991 
components:  992 

• Image loss 𝐿% captures the difference between the warped moving image and the ground-993 
truth fixed image.  994 

• Centroid alignment loss 𝐿&  is a supervised portion of the loss function. Given pre-995 
labeled centroids corresponding to ground-truth information about neuron positions in the 996 
fixed and moving images, this loss component captures the difference between the 997 
predicted moving centroids and the ground-truth moving centroids. 998 

• Regularization loss 𝐿' captures the prior that the “simplest” DDF that achieves the 999 
desired transform outcome is the best. For example, it’s implausible that a pair of neurons 1000 
that start close together end up on opposite sides of the worm, so a DDF that generates 1001 
such a transformation would have a high value of regularization loss. 1002 

 1003 
The total loss is then computed as 𝐿𝑜𝑠𝑠 = 𝑤%𝐿$ +𝑤&𝐿& +𝑤'𝐿'. We set 𝑤% = 1, 𝑤& = 0.1, and 1004 
𝑤' = 1. 1005 
 1006 
 1007 
(i) Image loss. 1008 
The image loss is the negative of the local squared zero-normalized cross-correlation (LNCC) 1009 
between the fixed and warped moving RFP images. We designate the fixed image as	𝑋()*+ and 1010 
the warped moving image as 𝑋,)+-. Define 𝐸(𝑋) as a function that computes the discrete 1011 
expectation of image 𝑋	within a sliding cube of side length 𝑛=16:  1012 
 1013 

𝐸(𝑋)[𝑥, 𝑦, 𝑧] =
1
𝑛. D D D 𝑋[𝑖, 𝑗, 𝑘]

/01"2

34/

501"2

645

701"2

$47

 1014 

 1015 
We then can compute the discrete sliding variance as 1016 
 1017 

𝑉(𝑋) = 𝐸(𝑋8) − 𝐸(𝑋)8 1018 
 1019 
The image loss (i.e., negative LNCC) is then defined as 1020 
 1021 

𝑳𝑰 = −LNCC = −
M𝐸N𝑋()*+ ∘ 𝑋,)+-P − 𝐸(𝑋()*+) ∘ EN𝑋,)+-PR

8

𝑉(𝑋()*+) ∘ 𝑉N𝑋,)+-P + ϵ
 1022 

 1023 
 1024 
(ii) Centroid alignment loss. 1025 
The centroid alignment loss is calculated as the negative of the sum of the Euclidean distances 1026 
between the moving centroids and the network’s predicted moving centroids, averaged across the 1027 
number of centroids available. We designate the ground-truth and network predicted centroids as 1028 
𝑁 × 3 matrices 𝑦()*+ and 𝑦,)+- respectively, where 𝑁 is the number of centroids, and the 𝑖th row 1029 
of each matrix represents the coordinates of neuron 𝑖’s centroid. Centroid alignment loss in the 1030 
overall loss function is then expressed as follows: 1031 
 1032 
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𝑳𝑪 =
1
𝑁DU D N𝑦()*+[𝑖, 𝑑] − 𝑦,)+-[𝑖, 𝑑]P

8

-4;,2,8

="2

$4;

 1033 

(iii) Regularization loss. 1034 
Our regularization loss function consists of four terms that seek to penalize DDFs that do not 1035 
correspond to possible physical motion of the worm. Of these terms, gradient norm is unchanged 1036 
from its previous implementation in the DeepReg package, while the other three components are 1037 
our additions: 1038 
 1039 

• Gradient norm loss 𝐿>)?- penalizes transformations for being nonuniform. 1040 
• Difference norm loss 𝐿@$AA penalizes transformations for moving pixels too far. 1041 
• Axis difference norm loss 𝐿B7$C@$AA penalizes transformations for moving pixels too far 1042 

along the z-dimension, which is less plausible than movement along the x- and y-1043 
dimensions in our recordings. 1044 

• Nonrigid penalty loss 𝐿=D1)$E$- penalizes transformations for being nonrigid (i.e., not 1045 
translation and rotation). (Note that unlike the gradient norm loss, this loss function will 1046 
not penalize DDFs that apply rigid-body rotations.)  1047 

 1048 
We then set 𝑳𝑹 = 0.02	𝐿>)?- + 0.005𝐿@$AA + 0.001	𝐿B7$C@$AA + 0.02	𝐿=D1)$E$- 1049 
 1050 

Gradient Norm. The gradient norm computes the average gradient of the DDF by 1051 
summing up the central finite difference of the DDF as the approximation of derivatives along 1052 
the x, y, and z axes. Specifically, we first approximate the partial derivatives for 𝒎 ∈ {𝟎, 𝟏, 𝟐} as 1053 
follows: 1054 

∂𝐷G
∂𝑥   ≈

1
2  
( D[2: X,  1: Y − 1,  1: Z − 1,  𝑚] − 𝐷[0: 𝑋 − 2,  1: 𝑌 − 1,  1: 𝑍 − 1,  𝑚]) 1055 

∂𝐷G
∂𝑦   ≈

1
2  
( 𝐷[1: 𝑋 − 1,  2: 𝑌,  1: 𝑍 − 1,  𝑚] − 𝐷[1: 𝑋 − 1,  0: 𝑌 − 2,  1: 𝑍 − 1,  𝑚]) 1056 

∂𝐷G
∂𝑧   ≈

1
2  
( 𝐷[1: 𝑋 − 1,  1: 𝑌 − 1,  2: 𝑍,  𝑚] − 𝐷[1: 𝑋 − 1,  1: 𝑌 − 1,  0: 𝑍 − 2,  𝑚]) 1057 

These results are then stacked to obtain H@
H7

, H@
H5

, and H@
H/

. The gradient norm is calculated as the 1058 
squared sum of these derivatives, averaged across all elements: 1059 

𝑳𝑮𝒓𝒂𝒅 =
1

3(𝑋 − 2)(𝑌 − 2)(𝑍 − 2)DDD D gh
∂𝐷
∂𝑥i

8

+ h
∂𝐷
∂𝑦i

8

+ h
∂𝐷
∂𝑧i

8

j
$,6,3,G

8

G4;

M".

34;

N".

64;

O".

$4;

 1060 

Difference Norm. The difference norm computes the average squared displacement of a 1061 
pixel under the DDF 𝑫: 1062 

𝑳𝑫𝒊𝒇𝒇 =
1

3𝑋𝑌𝑍DDD D(𝐷[𝑖, 𝑗, 𝑘,𝑚])8
8

G4;

M"2

34;

N"2

64;

O"2

$4;

 1063 

where 𝑋, 𝑌, 𝑍 are the sizes of the image along the x, y, and z axes respectively. 1064 
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 1065 
 1066 

Axis Difference Norm. Axis difference norm of the DDF 𝐷 calculates the average squared 1067 
displacement of a pixel along the z-axis: 1068 

𝐷/ = 𝐷[: , : , : ,2]										𝑳𝑨𝒙𝒊𝒔𝑫𝒊𝒇𝒇 =
1
𝑋𝑌𝑍DDD(𝐷/[𝑖, 𝑗, 𝑘])8

M"2

34;

N"2

$4;

O"2

$4;

 1069 

Nonrigid penalty. This term penalizes nonrigid transformations of the neurons by 1070 
utilizing the gradient information of the DDF. Unlike the approach used in computing the 1071 
gradient norm, where global rotations would have nonzero gradient, here we are interested in 1072 
penalizing specifically nonrigid transforms. We accomplish this by constructing a reference 1073 
DDF, denoted as 𝐷)+A, which warps the entire image to the origin: 𝐷)+A[𝑥, 𝑦, 𝑧, : ] =1074 
[−𝑥,−𝑦,−𝑧]. Then the difference DDF 𝐷-$AA = 𝐷 − 𝐷)+A has the property that the magnitude of 1075 

its gradient is rotation-invariant. We can then compute V@!"##
V7

, V@!"##
V5

, and V@!"##
V/

 as for the 1076 
gradient norm and define the gradient magnitude: 1077 

𝑀 = m
𝜕𝐷-$AA
∂𝑥 o

8

+ m
∂𝐷-$AA
∂𝑦 o

8

+ m
∂𝐷-$AA
∂𝑧 o

8

 1078 

Under any rigid-body transform, 𝑀 = 1. Thus, the nonrigid penalty is calculated as 1079 

𝑳𝑵𝒐𝒏𝒓𝒊𝒈𝒊𝒅 =
1

3(𝑋 − 2)(𝑌 − 2)(𝑍 − 2)DDD D p𝑀 +
1
𝑀 − 2p

$,6,3,G

8

G4;

M".

34;

N".

64;

O".

$4;

 1080 

In this way, rigid-body transforms will have 0 loss while any nonrigid transform will have a 1081 
positive loss. 1082 
 1083 
Data augmentation 1084 
During training, input data was subject to augmentation. We used random affine transformations 1085 
for augmentation. Each transformation was generated by perturbing the corner points of a cube 1086 
by random amounts, and computing the affine transformation resulting in that perturbation. The 1087 
same transformation was then applied to the moving image, fixed image, moving centroids, and 1088 
fixed centroids. 1089 
 1090 
Optimizer 1091 
BrainAlignNet was trained using the Adam optimizer with a learning rate of 10"[. 1092 
 1093 
Configuration file 1094 

The full configuration file we used during network training is available at 1095 
https://github.com/flavell-lab/BrainAlignNet/tree/main/configs 1096 
 1097 
Automatic Neuron Tracking System for Unconstrained Nematodes (ANTSUN) 2.0 1098 

We integrated BrainAlignNet into our previously-described ANTSUN pipeline35,46 (also applied 1099 
in59). Briefly, the pipeline: (i) performs some image pre-processing such as shear-correction and 1100 
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cropping; (ii) segments the images into neuron ROIs via a 3D U-Net; (iii) finds time points 1101 
where the worm postures are similar; (iv) performs image registration to define a coordinate 1102 
mapping between these time points; (v) applies that coordinate mapping to the ROIs; (vi) 1103 
constructs an ROI similarity matrix storing how likely different ROIs are to correspond to the 1104 
same neuron; (vii) clusters that matrix to extract neuron identity; (viii) maps the linked ROIs 1105 
onto the GCaMP data to extract neural traces; and (ix) performs some postprocessing such as 1106 
background-subtraction and bleach correction to extract neural traces. 1107 

The differences in ANTSUN 2.0 compared with our previously-published version of this 1108 
pipeline, ANTSUN 1.4, are that in ANTSUN 2.0 we use BrainAlignNet to perform image 1109 
registration rather than the gradient descent-based elastix, and we modified the heuristic function 1110 
used to construct the ROI similarity matrix. We only replaced the freely-moving registration with 1111 
BrainAlignNet; the immobilized registrations, channel alignment registration, and freely-moving 1112 
to immobilized registration are still performed with elastix. These remaining elastix-based 1113 
registrations are much less computationally expensive, taking only about 2% of the total 1114 
computation time of the original ANTSUN 1.4 pipeline. They will also likely be replaced with 1115 
BrainAlignNet in a future release of ANTSUN, after further diagnostics and controls are run. 1116 

The heuristic function used to compute the ROI similarity matrix was updated to add additional 1117 
terms specific to BrainAlignNet, including regularization and an additional ROI displacement 1118 
term that serves to implement our prior that ROIs which moved less far in the registration are 1119 
more likely to be correctly registered. Letting 𝑖 and 𝑗 be two different ROIs in our recording at 1120 
time points 𝑡$ (moving) and 𝑡6 (fixed), the full expression for the ROI similarity matrix is: 1121 

𝑀$6 = 𝑅("($
1

1 + 𝑤2𝑑$
	𝑞("($
\% 𝑟$6

\&𝑒"]\'?"$0\(^"$0\)1*"*$_ 1122 

Where: 1123 

𝑅("($ is 1 if there exists a registration mapping 𝑡$ to 𝑡6, and 0 otherwise. 1124 

𝑑$ is the displacement of the centroid of ROI 𝑖 under the DDF registration between 𝑡$ and 𝑡6. 1125 

𝑞("($ is the registration quality, computed as the NCC of warped moving image 𝑡$ vs fixed image 1126 
𝑡6. 1127 

𝑟$6 is the fractional overlap of warped moving ROI 𝑖 and fixed ROI 𝑗 (intersection / max size). 1128 

𝑎$6 is the absolute difference in marker channel activity (i.e. tagRFP brightness) between ROIs 𝑖 1129 
and 𝑗, normalized to mean activity at the corresponding timepoints 𝑡$ and 𝑡6. 1130 

𝑐$6 is the distance between the centroids of warped moving ROI 𝑖 and fixed ROI 𝑗. 1131 

𝑛("($ is the (unweighted) nonrigid penalty loss of the DDF registration from 𝑡$ to 𝑡6. 1132 

𝑤$ are weights controlling how important each variable is.  1133 
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Additionally, the matrix is forced to be symmetrical by setting 𝑀6$ = 𝑀$6 whenever 𝑀6$ = 0 and 1134 
𝑀$6 ≠ 0. It is also sparse since 𝑅("($ and 𝑟$6 are usually 0. Finally, there are two additional 1135 
hyperparameters in the clustering algorithm, 𝑤! and 𝑤`. 𝑤!	controls the minimum height the 1136 
clustering algorithm will reach (effectively, 𝑤!	is a cap on how low 𝑀$6 values can get, or how 1137 
low the heuristic value can fall before determining that the ROIs are not the same neuron) and 1138 
𝑤` controls the acceptable collision fraction (a collision is defined by a cluster containing 1139 
multiple ROIs from the same timepoint, which should not happen since each neuron should 1140 
correspond to only one ROI at each time point). 1141 

We determined the weights 𝑤$ by performing a grid search through 2,912 different combinations 1142 
of weights on three eat-4::NLS-GFP datasets. To evaluate the outcome of each combination, we 1143 
computed the error rate (rate of incorrect neuron linkages) and number of detected neurons. The 1144 
error rate was computed as previously described35: since the strain eat-4::NLS-GFP expresses 1145 
GFP in some but not all neurons, we can quantify registration errors as instances where a GFP-1146 
positive neuron lacked GFP in a time point and vice versa, as these correspond to neuron 1147 
mismatches. We then selected the combination of parameters that maximize the number of 1148 
detected neurons while minimizing the error rate. One eat-4::NLS-GFP dataset (the one shown in 1149 
Figure 2) was used as a withheld testing animal to determine this optimal set of parameters. The 1150 
pan-neuronal GFP and pan-neuronal GCaMP animals were not included in this parameter search.   1151 

The values of the parameters we used were: 1152 

𝑤2 = 	2 1153 

𝑤8 = 25 1154 

𝑤. = 1 1155 

𝑤[ = 3 1156 

𝑤a = 1 1157 

𝑤b = 1 1158 

𝑤! = 	0.0001 1159 

𝑤` = 0.05 1160 

 1161 

AutoCellLabeler 1162 

Network Architecture 1163 

AutoCellLabeler uses a 3-D U-Net architecture35,47, with input dimensions 4 × 64 × 120 × 284 1164 
(fluorophore channel, z, y, x) and output dimensions 185 × 64 × 120 × 284	(label channel, z, y, 1165 
x). The 3D U-Net has 4 input levels and 4 output levels, with 64 ⋅ 2$ feature channels at the 𝑖th 1166 
level for 𝑖 ∈ {0,1,2,3}.  1167 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2024. ; https://doi.org/10.1101/2024.07.18.601886doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.18.601886
http://creativecommons.org/licenses/by/4.0/


 

28 
 

There is an encoder block that maps an input image to the 0th input level, followed by three 1168 
additional encoder blocks that map input level 𝑖 to input level 𝑖 + 1 for 𝑖 ∈ {0,1,2}. Each encoder 1169 
block consists of two convolutional blocks followed by a 2 × 2 × 2 max pool layer, with the 1170 
exception of the first encoder layer which does not have the max pool layer. The first 1171 
convolutional block in each encoder increases the number of channels by a factor of 2 and the 1172 
second leaves it unchanged. 1173 

Each convolutional block consists of a GroupNorm layer with group size 16 (except for the first 1174 
convolutional layer in the first encoder, which has group size 1), followed by a 3D convolutional 1175 
layer with kernel size 3 and the appropriate number of input and output channels, followed by a 1176 
ReLU activation layer. 1177 

After the encoder, the 3D U-Net then has three decoder blocks mapping output level 𝑖 + 1 and 1178 
input level 𝑖	to output level 𝑖 for 𝑖 ∈ {0,1,2}. Output level 3 is defined to be the same as input 1179 
level 3. Each decoder layer consists of an 2 × 2 × 2 upsampling layer which upsamples output 1180 
level 𝑖 via interpolation, followed by a concatenation layer that concatenates it to input level 𝑖 −1181 
1 along the channel axis, followed by two convolutional blocks. The first convolutional block 1182 
decreases the number of channels by a factor of 2 and the second convolutional block leaves the 1183 
number of channels unchanged. After the final decoder layer, a 1 × 1 convolutional layer is 1184 
applied to increase the number of output channels to the desired 185. 1185 

Training Inputs 1186 

We trained the AutoCellLabeler network on a set of 81 human-annotated NeuroPAL images, 1187 
with 10 images withheld for validation and another 11 withheld for testing. Each training dataset 1188 
contained three components: image, label, and weight. The images were 4 × 64 × 120 × 284 , 1189 
with the first dimension corresponding to channel: we spectrally isolated each of the four 1190 
fluorescent proteins NLS-mNeptune 2.5, NLS-CyOFP1, NLS-mTagBFP2, and NLS-tagRFP 1191 
using our previously described imaging setup35, described in detail above. The training images 1192 
were then created by registering all of the images to the NLS-tagRFP image as described above, 1193 
cropping all of them to 64 × 120 × 284 dimensions (𝑧, 𝑦, 𝑥), and then stacking them along the 1194 
channel axis to be 4 × 64 × 120 × 284 (in the reverse order that they were for the 1195 
BrainAlignNet). 1196 

To create the labels, we ran our segmentation U-Net on each such image to generate ROIs 1197 
corresponding to neurons in these images. Humans then manually annotated the images and 1198 
assigned a label and a confidence to these ROIs. These confidence values ranged from 1-5, with 1199 
5 being the maximum. For network training, only confidence-1 labels were excluded while all 1200 
labels from confidence 2 through 5 were included. We then made a list ℓ	of length 185: the 1201 
background label, and all 184 labels that were ever assigned in any of the human-annotated 1202 
images. This list contained all neurons expected to be in the C. elegans head with the exceptions 1203 
of ADFR, AVFR, RMHL, RMHR, and SABD, as these neurons were not labeled in any dataset. 1204 
The list also contained six other possible classes corresponding to neurons in the anterior portion 1205 
of the ventral cord: VA01, VB01, VB02, VD01, DD01, and DB02, as well as the classes “glia” 1206 
and “granule” to denote non-neuronal objects that fluoresce (and might be labeled with an ROI), 1207 
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and the class “RMH?” as the human labelers were never able to disambiguate whether their 1208 
“RMH” labels corresponded to RMHL or RMHR. 1209 

Due to a data processing glitch, labels for 2 of the 81 training datasets were imported incorrectly; 1210 
validation and testing datasets were unaffected. This resulted in those datasets effectively having 1211 
random labels during training. We are currently re-training all versions of the AutoCellLabeler 1212 
network and expect their performance to modestly increase once this is rectified. 1213 

For each image, the human labels were transformed into matrices 𝐿 with dimensions 1214 
185 × 64 × 120 × 284 via one-hot encoding, so that 𝐿[𝑛, 𝑧, 𝑦, 𝑥] denotes whether the pixel at 1215 
position (𝑥, 𝑦, 𝑧) has label ℓ[𝑛]. Specifically, we set 𝐿[𝑛, 𝑧, 𝑦, 𝑥] for 𝑛 > 0 to be 1 if the pixel at 1216 
position (𝑥, 𝑦, 𝑧) corresponded to an ROI that the human labeled as ℓ[𝑛], and 0 otherwise. For 1217 
example, the fourth element of ℓ was I2L (i.e., ℓ[3] = "𝐼2𝐿"), so 𝐿[3, 𝑧, 𝑦, 𝑥] would be 1 in the 1218 
ROI labeled as I2L and 0 everywhere else. The first label (i.e., 𝑛 = 0) corresponded to the 1219 
background, which was 1 if all other channels were 0, and 0 otherwise. 1220 

Finally, we create a weight matrix 𝑊 of dimensions 64 × 120 × 284 (in the code, this matrix 1221 
has dimensions 185 × 64 × 120 × 284, but the loss function is mathematically equivalent to the 1222 
version presented here). The entries of 𝑊 are determined by the following set of rules for 1223 
weighting each corresponding pixel in the human label matrix 𝐿: 1224 

• 𝑊[𝑧, 𝑦, 𝑥] = 1 for all 𝑥, 𝑦, 𝑧 with the background label, i.e. 𝐿[0, 𝑧, 𝑦, 𝑥] = 1 1225 
• 𝑊[𝑧, 𝑦, 𝑥] = 2.;

=(d+)
𝑓(𝑐)) if there is an ROI at (𝑥, 𝑦, 𝑧) with label 𝑙) that has confidence 𝑐). 1226 

Here 𝑁(𝑙)) is the number of ROIs across all datasets (train, validation and testing) with 1227 
the label 𝑙). This makes neurons with fewer labels more heavily weighted in training. 1228 
Additionally, 𝑓 is a function that weighs labels based on human confidence score 𝑐), 1229 
where 𝑐) ∈ {2, 3, 4,5}. Specifically, 𝑓(2) = 50, 𝑓(3) = 600, 𝑓(4) = 900, and 𝑓(5) =1230 
1000. The number 130 was the maximum number of times that any neuronal label (e.g.: 1231 
not “granule” or “glia”) was detected across all of the training datasets. 1232 

For the “no weight” network described in Figure 4, all entries of this matrix were set to 1. 1233 

Loss function 1234 

The loss function is pixel-wise weighted cross-entropy loss. This is computed as: 1235 

𝐋𝐨𝐬𝐬 = −
1

𝑑7𝑑5𝑑/𝐾
D D D D 𝑊[𝑧, 𝑦, 𝑥]𝐿[𝑛, 𝑧, 𝑦, 𝑥]

-,"2

/4;

--"2

54;

-."2

74;

f"2

14;

log m
𝑒g[1,/,5,7]

∑ 𝑒g[G,/,5,7]f"2
G4;

o 1236 

 1237 

Here (𝑑/ , 𝑑5 , 𝑑7)	are the image dimensions (64, 120, 284), 𝐾 is the number of total labels (i.e., 1238 
the length of ℓ), and (𝑛, 𝑥, 𝑦, 𝑧) are indices within label and image dimensions. 𝑊 and 𝐿 are as 1239 
defined above, and 𝑃 is the prediction (output) of the network. In this way, the network has a 1240 
lower loss if 𝑃[𝑛, 𝑧, 𝑦, 𝑥] is high when 𝐿[𝑛, 𝑧, 𝑦, 𝑥] = 1 (ie: the network got the label right), as 1241 
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then the softmax log � +/[1,,,-,.]

∑ +/[4,,,-,.]567
489

� term will be close to 0 and therefore multiply 𝐿[𝑛, 𝑧, 𝑦, 𝑥] 1242 

by a small (negative) number, resulting in an overall small (positive) loss. The 𝑊[𝑧, 𝑦, 𝑥] term 1243 
makes it so the network cares more about pixels and labels with high weight – in particular, it 1244 
cares more about foreground labels 𝑛 > 0 and about higher-confidence and rarer labels. 1245 

Evaluation metric 1246 

The evaluation metric is weighted mean intersection-over-union (IoU) across channels. Let 𝐴 be 1247 
the network’s argmax label matrix. Specifically, 𝐴[𝑛, 𝑧, 𝑦, 𝑥] = 1 when 𝑃[𝑛, 𝑧, 𝑦, 𝑥] =1248 
max
G

𝑃[𝑚, 𝑧, 𝑦, 𝑥] and 𝐴[𝑛, 𝑧, 𝑦, 𝑥] = 0 otherwise. Then the evaluation metric is defined as: 1249 

𝐌𝐞𝐚𝐧𝐈𝐨𝐔 ≈
1
𝐾D

∑ ∑ ∑ 𝑊[𝑧, 𝑦, 𝑥] ⋅ 𝐿[𝑛. 𝑧, 𝑦, 𝑥] ⋅ 𝐴[𝑛, 𝑧, 𝑦, 𝑥]-,"2
/4;

--"2
54;

-."2
74;

∑ ∑ ∑ 𝑊[𝑧, 𝑦, 𝑥] ⋅ max	(𝐿[𝑛, 𝑧, 𝑦, 𝑥], 𝐴[𝑛, 𝑧, 𝑦, 𝑥])-,"2
/4;

--"2
54;

-."2
74;

f"2

14;

 1250 

In this manner, if the network is always correct, 𝐴 = 𝐿, the numerator and denominator will be 1251 
equal, and the evaluation score will be 1. Similarly, if the network is always wrong, the 1252 
evaluation score will be 0. (In the code, this metric is slightly different from the version 1253 
presented here due to additional complexity with the 𝑊 matrix having a nonuniform extra 1254 
dimension, but they act very similarly.) 1255 

Optimizer 1256 

The network was optimized with the Adam optimizer with a learning rate of 10"[.  1257 

Data augmentation 1258 

The following data augmentations are performed on the training data. One augmentation is 1259 
generated for each iteration, in the following order. The same augmentation is applied to the 1260 
image, label, and weight matrices, except that contrast adjustment and noise are not used for the 1261 
label and weight matrices. Missing pixels are set to the median of the image, or to 0 for the label 1262 
and weight matrices. Interpolation is linear for the images and nearest-neighbors for label and 1263 
weight. Full parameter settings such as strength or range of each augmentation are given in the 1264 
parameter file (see below). 1265 

- Rotation. The rotations in the xy plane and yz plane are much larger than the rotation in 1266 
the xz plane because the worm is oriented to lay roughly along the x axis, and the physics 1267 
of the coverslip are such that it cannot rotate about the y axis. 1268 

- Translation. The image is translated.  1269 
- Scaling. The image is scaled. 1270 
- Shearing. The image is sheared. 1271 
- B-Spline Deformation. Evenly-spaced control points are chosen and a random 1272 

piecewise-cubic B-Spline deformation is generated between them. Additionally, a second 1273 
B-Spline deformation with the same control points is generated that focuses on 1274 
deformations in the xy plane designed to resemble worm bending. The two transforms are 1275 
added and then executed. 1276 
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- Rotation by multiples of 90 degrees. The image is rotated. 1277 
- Contrast adjustment. Each channel is adjusted separately. 1278 
- Gaussian blur. Gaussian blur is added to the image, in a gradient along the z-axis. The 1279 

gradient is intended to mimic the optical effect of the image becoming blurrier farther 1280 
away from the objective. 1281 

- Gaussian noise. Added to the image, with each pixel being sampled independently. 1282 
- Poisson noise. Added to the image, with each pixel being sampled independently. 1283 

“Less aug” network training 1284 

We trained a version of the network with some of our custom augmentations disabled, to see 1285 
how important they were to the overall performance, compared with the other more standard data 1286 
augmentations. The specific augmentations that were disabled were: 1287 

- The second B-Spline deformation focusing on deformations in the xy plane 1288 
- Contrast adjustment 1289 
- Gaussian blur 1290 

Parameter file 1291 

The full parameter files are available at: 1292 

https://github.com/flavell-lab/pytorch-3dunet/tree/master/AutoCellLabeler_parameters 1293 

They include augmentation hyperparameters and various other settings not listed here. There is a 1294 
different parameter file for each version of the network, though in most cases the differences are 1295 
simply the number of input channels. If a user installs the pytorch-3dunet package from that 1296 
GitHub repository and replace the paths to the training and validation data with their locations on 1297 
your computer, they can train it with the exact settings we used here. Training will require a 1298 
GPU with at least 48GB of VRAM. 1299 

Evaluation 1300 

During evaluation, an additional softmax layer is applied to convert network output into 1301 
probabilities. Let	𝐼 be the input image and let 𝑃 be the network’s output (after the softmax layer). 1302 
Then at every pixel (𝑥, 𝑦, 𝑧), the network’s output array 𝑃[𝑛, 𝑧, 𝑦, 𝑥] represents the probability 1303 
that this pixel has label ℓ[𝑛]. 1304 

ROI image creation 1305 

To convert the output into labels, we first ran our previously-described neuron segmentation 1306 
network35,46 on the tagRFP channel of the NeuroPAL image. Specifically, since this 1307 
segmentation network was trained on lower-SNR freely-moving data, we ran it on a lower-SNR 1308 
copy of the tagRFP channel. (This copy was one of the 60 images we averaged together to get 1309 
the higher-SNR image fed to AutoCellLabeler.) 1310 

The segmentation network and subsequent watershed post-processing35 were then used to 1311 
generate a matrix 𝑅 with dimensions 284 × 120 × 64 (same as the original tagRFP image). 1312 
Each pixel in 𝑅	contains an index, either 0 for background or a positive integer indicating a 1313 
specific neuron. The segmentation network and watershed algorithms were designed such that all 1314 
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pixels belonging to a specific neuron have the same index, and pixels belonging to any other 1315 
neuron have different indices. We define an ROI 𝑅$ = {(𝑥, 𝑦, 𝑧)	|	𝑅[𝑥, 𝑦, 𝑧] = 𝑖}. 1316 

ROI label assignment 1317 

We now wish to use AutoCellLabeler to assign a label to ROI 𝑅$. To do this, we first generate a 1318 
mask matrix 𝑀$ with the same dimensions as 𝑅, defined by: 1319 

• 𝑀$[𝑥, 𝑦, 𝑧] = 0 if 𝑅[𝑥, 𝑦, 𝑧] ≠ 𝑖 1320 
• 𝑀$[𝑥, 𝑦, 𝑧] = 0.01 if 𝑅[𝑥, 𝑦, 𝑧] = 𝑖 and there exists (𝑋, 𝑌, 𝑍) face-adjacent to (𝑥, 𝑦, 𝑧) 1321 

such that 𝑅[𝑋, 𝑌, 𝑍] ≠ 𝑖. 1322 
• 𝑀$[𝑥, 𝑦, 𝑧] = 1 otherwise. 1323 

Here, the 0.01 entries are provided to the edges of the ROI so as to weight the central pixels of 1324 
each ROI more heavily when determining the neuron’s identity. 1325 

Finally, we define a prediction matrix 𝐷 that allows us to determine the label of each ROI and 1326 
the corresponding confidence of each label. Letting 𝑉 be the number of distinct nonzero values 1327 
in 𝑅 (ie: the number of ROIs) and 𝐾 = 185 be the number of possible labels (as before), we 1328 
define a 𝑉 × 𝐾 prediction matrix 𝐷 whose (𝑖, 𝑛)th entry represents the probability that ROI 𝑅$ 1329 
has label 𝑛 as follows: 1330 

𝐷[𝑖, 𝑛] =
∑ 𝑀[𝑖, 𝑥, 𝑦, 𝑧]𝑃[𝑛, 𝑧, 𝑦, 𝑥]!"#

∑ 𝑀[𝑖, 𝑥, 𝑦, 𝑧]!"#
	1331 

Here the sums are taken over all pixels in the image.  1332 

Note that because of the additional softmax layer, we have ∑ 𝐷[𝑖, 𝑛]1 = 1 for all 𝑖. From this, we 1333 
can then define the label index of ROI 𝑅$ to be 𝑛$ = argmax1𝐷[𝑖, 𝑛]. From this, we can define 1334 
its label to be ℓ[𝑛$], and the confidence of that label to be 𝐷[𝑖, 𝑛$].   1335 

ROI Label Postprocessing 1336 

After all ROIs are assigned a label, they are sorted by confidence in descending order. The ROIs 1337 
are iterated through in this order, with each ROI being assigned its most likely label and the set 1338 
of all assigned labels being tracked. If an ROI 𝑅$ 	has its most likely label 𝑙$ already assigned to a 1339 
different ROI 𝑅6, the distance between the centroids of ROIs 𝑅$ and 𝑅6 is computed. If this 1340 
distance is small enough, the collision is likely due to over-segmentation by the segmentation U-1341 
Net (i.e., ROIs 𝑅$ and 𝑅6 are actually the same neuron). In this case, they are assigned the same 1342 
label. Otherwise, the collision is likely due to a mistake on the part of AutoCellLabeler, and the 1343 
label for ROI 𝑅$ is deleted. (i.e. the higher-confidence label for ROI 𝑅6 is kept and the lower-1344 
confidence label 𝑅$ is discarded.) 1345 

Additionally, ROIs are checked for under-segmentation. This rarely happens when the 1346 
segmentation U-Net incorrectly merges two neurons into the same ROI. This is assessed by 1347 
checking how many pixels in the ROI 𝑅$ 	have predictions other than the full ROI label index	𝑛$. 1348 
Specifically, we count the number of pixels with 𝑃[𝑛, 𝑥, 𝑦, 𝑧] > 0.75 within 𝑅$ for some 𝑛 ≠ 𝑛$. 1349 
If there exists at least 10 pixels with label 𝑛 ≠ 𝑛$, or 20% of the pixels in the ROI are labeled as 1350 
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𝑛 ≠ 𝑛$ in this way, it is plausible that the ROI contains parts of another neuron. In this case, the 1351 
label for that ROI is deleted. 1352 

Most neuron classes in the C. elegans brain are bilaterally symmetric and have two distinct cell 1353 
bodies on the left and right part of the animal. These are genetically identical and therefore have 1354 
exactly the same shape and color, which can often make it difficult to distinguish between them. 1355 
For most applications, it is also usually unnecessary to distinguish between them since they 1356 
typically have nearly-identical activity and function. In some cases, AutoCellLabeler can be 1357 
confident in the neuron class but uncertain about the L/R subclass, assigning a probability of 1358 
>10% to both L and R subclasses. In this case, we do not assign a specific subclass, instead 1359 
assigning a label only for the main class with the sum of its confidence for either of the two 1360 
subclasses. We note that this is only done for the L/R subclass – other neurons can also have D/V 1361 
subclasses, but these are typically functionally distinct, so we require the network to 1362 
disambiguate D/V for all neuron classes. 1363 

Finally, certain neuron classes were present few times in our manually-labeled data, making it 1364 
more likely for the network to mislabel them due to lack of training data, and simultaneously 1365 
making it difficult for us to assess its performance on these neuron classes due to the lack of 1366 
testing data where they were labeled. We deleted any AutoCellLabeler labels corresponding to 1367 
one of these classes, which were ADF, AFD, AVF, AVG, DB02, DD01, RIF, RIG, RMF, RMH, 1368 
SAB, SABV, SIAD, SIBD, VA01, and VD01. Additionally, there are other fluorescent cell types 1369 
in the worm’s head. AutoCellLabeler was trained to label them as either “glia” or “granule”, to 1370 
avoid mislabeling them as neurons, and any AutoCellLabeler labels of “glia” or “granule” were 1371 
deleted to ensure all of our analyses are based on actual neuron labels. 1372 

Altogether, these postprocessing heuristics resulted in deleting network labels for only 6.3% of 1373 
ROIs with confidence 4 or greater human neuron labels (ie: not “granule” or “glia”).  1374 

 1375 

CePNEM Simulation Analysis (Figure 4E) 1376 

To assess performance of our AutoCellLabeler network on the SWF415 strain, we could not 1377 
compare its labels to human labels since humans do not know how to label neurons in this strain. 1378 
Therefore, we used functional information about neuron activity patterns to assess accuracy of 1379 
the network. We used our previously-described CePNEM model to do this35. Briefly, CePNEM 1380 
fits a single neural activity trace to the animal’s behavior to extract parameters about how that 1381 
neuron represents information about the animal’s behavior. CePNEM fits a posterior distribution 1382 
for each parameter, and statistical tests run on that posterior are used to determine encoding of 1383 
behavior. For example, if nearly all parameter sets in the CePNEM posterior for a given neuron 1384 
have the property that they predict the neuron’s activity is higher when the animal is reversing, 1385 
then CePNEM would assign a reversal encoding to that neuron. 1386 

By doing this analysis in NeuroPAL animals where the identity of each neural trace is known, 1387 
we have previously created an atlas of neural encoding of behavior35. This atlas revealed a set of 1388 
neurons that have consistent encodings across animals: AVA, AVE, RIM, and AIB encode 1389 
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reverse locomotion; RIB, AVB, RID, and RME encode forward locomotion; SMDD encodes 1390 
dorsal head curvature; and SMDV and RIV encode ventral head curvature. Based on this prior 1391 
knowledge, we decided to quantify the fraction 𝑓 of labeled neurons with the expected activity-1392 
behavior coupling. For example, if AutoCellLabeler labeled 10 neurons as AVA and 7 of them 1393 
encoded reverse locomotion when fit by CePNEM, this fraction would be 0.7.  1394 

However, this fraction is not necessarily an accurate estimate of AutoCellLabeler’s accuracy. For 1395 
example, it might have been possible for AutoCellLabeler to mislabel a neuron as AVA that 1396 
happened to encode reverse locomotion in that animal, thus making the incorrect label appear 1397 
accurate. On the other hand, CePNEM is limited by statistical power, and can sometimes fail to 1398 
detect the appropriate encoding. This could make a correct label appear inaccurate. 1399 

To correct for these factors, we ran a simulation analysis to try to estimate the fraction 𝑝 of labels 1400 
that were correct. To do this, we iterated through every one of AutoCellLabeler’s labels that was 1401 
one of the consistent-encoding neuron classes (i.e. one of the neurons listed above). In each 1402 
simulation, we assign labels to neurons in the following manner: with probability 𝑝C$G (i.e., the 1403 
fraction of labels estimated by our simulation to be correct), the label was reassigned to a random 1404 
neuron that was given that label by a human in a NeuroPAL animal (at confidence 3 or greater); 1405 
with probability 1 − 𝑝C$G, the label was reassigned to a random neuron in the same (SWF415) 1406 
animal. In this way, the simulation controls for both of the possible inaccuracies outlined above. 1407 
Then the fraction 𝑓C$G of labeled neurons with the expected encoding was computed for each 1408 
simulation. 1000 simulation trials were run for each value of 𝑝C$G, which ranged from 0 to 100 – 1409 
the mean and standard deviation of these trials are shown in Figure 4E. We then computed the 1410 
probability 𝑝C$G for which 𝑓C$G was in closest agreement to 𝑓, which was 69% (dashed vertical 1411 
line). This is our estimate for the ground-truth correct label probability 𝑝. 1412 

 1413 

CellDiscoveryNet 1414 

Network Architecture 1415 

The architecture of CellDiscoveryNet uses the same LocalNet backbone from DeepReg that 1416 
BrainAlignNet uses, with the following modifications to the architecture and training procedure 1417 
(these modifications are currently in the multicolor branch): 1418 

- The input images to CellDiscoveryNet are 284 × 120 × 64 × 4 instead of 1419 
284 × 120 × 64. 1420 

- The image concatenation layer in CellDiscoveryNet concatenates the moving and fixed 1421 
images along the existing channel dimension instead of adding a new channel dimension. 1422 
Effectively, this means that the output of that layer (and input to the LocalNet backbone) 1423 
is now 284 × 120 × 64 × 8 instead of 284 × 120 × 64 × 2. 1424 

- The affine data augmentation procedure was adjusted to first construct a 3D affine 1425 
transformation, then independently apply that same transformation to each channel in the 1426 
4D input images. 1427 
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- In the output warping layer, the DDF is now applied independently to each channel of the 1428 
moving image to create the predicted fixed image. 1429 

Loss function 1430 

The loss function in CellDiscoveryNet is a weighted sum of image loss and regularization loss. 1431 
As this is an entirely unsupervised learning procedure, label loss is not used. 1432 

The image loss component has weight 1 and uses GNCC instead of LNCC used by 1433 
BrainAlignNet. The GNCC loss is computed as:  1434 

𝐆𝐍𝐂𝐂 =
1
𝐶D

∑ ∑ ∑ (𝐹[𝑥, 𝑦, 𝑧] −	𝜇k^)(𝑃[𝑥, 𝑦, 𝑧] −	𝜇g^)
-,"2
/4;

--"2
54;

-."2
74;

𝑑7𝑑5𝑑/𝜎k^8 𝜎g^8

&

^42

 1435 

Where N𝑑7 , 𝑑5 , 𝑑/ , 𝐶P are the dimensions of the image, 𝐹 is the fixed image, 𝑃 is the predicted 1436 
fixed image (i.e.: DDF-transformed moving image), 𝐶 is the number of channels, 𝜇%^ is the mean 1437 
of image 𝐼 in channel 𝑐, and 𝜎%^8  is the variance of image 𝐼 in channel 𝑐. 1438 

The regularization loss terms are as before for BrainAlignNet, except with weights 0 for the axis 1439 
difference norm, 0.05 for the gradient norm, 0.05 for the nonrigid penalty, and 0.0025 for the 1440 
difference norm. 1441 

Training data 1442 

CellDiscoveryNet was trained on 3,240 pairs of 284 × 120 × 64 × 4 images, comprising every 1443 
possible pair combination of 81 distinct images. These were the same 81 images used to train 1444 
AutoCellLabeler. Each pair consisted of a moving image and a fixed image. Both images were 1445 
pre-processed by setting the dynamic range of pixel intensities to [0, 1], independently for each 1446 
channel.  1447 

Each moving image was additionally pre-processed by using our previously-described GPU-1448 
accelerated Euler registration to coarsely align it to the corresponding fixed image. This 1449 
registration was run on the NLS-tagRFP channel, and the Euler transform fit to that channel was 1450 
then independently applied to each other channels to generate the full transformed moving 1451 
image.  1452 

There were 45 validation image pairs (from 10 validation images), and 1,866 testing image pairs. 1453 
The testing image pairs added 11 additional images, and consisted of all pairs not present in 1454 
either the training or validation data. (So, for example, a registration problem between an image 1455 
in the training data and an image in the validation data would count as a testing image pair, since 1456 
the network never saw that image pair in training or validation.) The split of images in the 1457 
validation and testing data was identical to that for AutoCellLabeler. 1458 

The network was trained for 600 epochs with the Adam optimizer and a learning rate of 10"[. 1459 
Full training parameter settings are available at https://github.com/flavell-1460 
lab/DeepReg/blob/multicolor/CellDiscoveryNet/train_config.yaml 1461 

 1462 
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ANTSUN 2U 1463 

To convert the CellDiscoveryNet registration outputs into neuron labels across animals, we 1464 
created a modified version of our ANTSUN image processing pipeline. We skipped the pre-1465 
processing steps since the images were already pre-processed, used 102 four-channel images 1466 
instead of 1600 one-channel images, set the registration graph to be the complete graph (except 1467 
each pair of images is only registered once and not once in each direction), substituted 1468 
BrainAlignNet with CellDiscoveryNet for the nonrigid registration step, and skipped the trace 1469 
extraction steps of ANTSUN (stopping after it computed linked neuron IDs). 1470 

We also modified the heuristic function in the matrix that was subject to clustering to better 1471 
account for the nature of this multi-spectral data. Specifically, we removed the marker channel 1472 
brightness heuristic 𝑎$6 since brightness of neurons relative to the mean ROI is not likely to be 1473 
well conserved across different animals. We replaced it with a more problem-specific heuristic: 1474 
color. Specifically, the color 𝐶$ 	of an ROI 𝑅$ was defined as the 4-vector of its brightness in each 1475 
of the four channels, normalized to the average brightness of that ROI across the four channels. 1476 
We then define 1477 

𝑎$6 =D 𝐶$3 − 𝐶63 
[

342

 1478 

where 𝑖, 𝑗 each indicates an ROI label. 1479 

In this way, 𝑎$6 will be small if the ROIs have similar colors and large if they have different 1480 
colors. We use this new color-based 𝑎$6 in the same way in the heuristic function that we used 1481 
the original brightness-based 𝑎$6, except that we set its weight 𝑤[ = 7.  1482 

We did not run hyperparameter search on any of the other weight parameters 𝑤$ for this dataset 1483 
to avoid overfitting to the 102 animals included in it, instead leaving them all at their default 1484 
values from the original ANTSUN 2.0 pipeline (with the one exception of 𝑤` which we set to 0 1485 
here in light of having much fewer animals than we did timepoints). We hypothesize that 1486 
performance may increase even further upon hyperparameter search, though this would likely 1487 
require considerably more data for testing. The only exception was that we varied parameter 𝑤!, 1488 
which controls the precision vs recall tradeoff. Larger values of 𝑤! result in more, but less 1489 
accurate, detected clusters; each cluster corresponds to a single neuron class label. We elected to 1490 
use a value of 𝑤! = 10"# for all displayed results; the full tradeoff curve is available in Figure 1491 
5f. 1492 

Accuracy metric 1493 

By construction, clusters in ANTSUN 2U should correspond to individual neuron classes. To 1494 
compute its accuracy, we checked whether clusters indeed only correspond to single neuron 1495 
classes. Let 𝐿(𝑟, 𝑎) be the function mapping ROI 𝑟 in animal 𝑎 to its human label (ignoring L/R), 1496 
and let 𝐶$ be a set of (𝑟, 𝑎) values belonging to the same cluster. We can then define 𝐿$ to be the 1497 
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set of labels in 𝐶$: 𝐿$ = {𝐿(𝑟, 𝑎)|(𝑟, 𝑎) ∈ 𝐶$ , 𝐿(𝑟, 𝑎) ≠ UNKNOWN}. Then let 𝐹$ be the most 1498 
frequent label in 𝐿$. We can then define the accuracy of ANTSUN 2U as follows: 1499 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
∑ ∑ 𝛿dk" 	d∈m"$∈n

∑ |𝐿$|$∈n
 1500 

Here |𝐿$| is the number of elements in the set 𝐿$, 𝑆 is the set of all clusters with |𝐿$| > 2 (which 1501 
included all but one cluster in our data with 𝑤! = 10"#), and 𝛿 is the Kronecker delta function. 1502 
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Figure 1. BrainAlignNet can perform non-rigid registration to align the neurons in the C. 1710 
elegans head 1711 

(A) Network training pipeline. The network takes in a pair of images and a pair of centroid 1712 
position lists corresponding to the images at two different time points (fixed and moving). 1713 
(In the LocalNet diagram, this is represented as “IN”. Intermediate cuboids represent 1714 
intermediate representations of the images at various stages of network processing. In 1715 
reality, the cuboids are four-dimensional, but we represent them with three dimensions 1716 
(up/down is x, left/right is y, in/out is channel, and we omit z) for visualization purposes. 1717 
Spaces and arrows between cuboids represent network blocks, layers, and information 1718 
flow. See Methods for a detailed description of network architectures.) Image pairs were 1719 
selected based on the similarity of worm postures (see Methods). The fixed and moving 1720 
images were pre-registered using an Euler transformation, translating and rotating the 1721 
moving images to maximize their cross-correlation with the fixed images. The fixed and 1722 
moving neuron centroid positions were obtained by computing the centers of the same 1723 
neurons in both the fixed and moving images as a list of (x, y, z) coordinates. This 1724 
information was available since we had previously extracted calcium traces from these 1725 
videos using a previous, slow version of our image analysis pipeline. The network 1726 
outputs a Dense Displacement Field (DDF), a 4-D tensor that indicates a coordinate 1727 
transformation from fixed image coordinates to moving image coordinates. The DDF is 1728 
then used to transform the moving images and fixed centroids to resemble the fixed 1729 
images and moving centroids. During training, the network is tasked with learning a DDF 1730 
that transforms the centroids and images in a way that minimizes the centroid alignment 1731 
and image loss, as well as the regularization loss (see Methods). Note that, after training, 1732 
only images (not centroids) need to be input into the network to align the images. 1733 

(B) Network loss curves. The training and validation loss curves show that validation 1734 
performance plateaued around 300 epochs of training. 1735 

(C) Example of registration outcomes on neuronal ROI images. The network-learned DDF 1736 
warps the neurons in the moving image (‘moving ROIs’). The warped-moving ROIs are 1737 
meant to be closer to the fixed ROIs. Each neuron is uniquely colored in the ROI images 1738 
to represent its identity. The centroids of these neurons are represented by the white dots. 1739 
Here, we take a z-slice of the 3-D fixed and moving ROI blocks on the x-y plane to show 1740 
that the DDF can warp the x and y coordinates of the moving centroids to align with the x 1741 
and y coordinates of the fixed centroids with one-pixel precision. 1742 

(D) Example of registration outcomes on tagRFP images. We show the indicated image 1743 
blocks as Maximal Intensity Projections (MIPs) along the z-axis, overlaying the fixed 1744 
image (orange) with different versions of the moving image (blue). While the fixed image 1745 
remains untransformed, the uninitialized moving image (left) gets warped by an Euler 1746 
transformation (middle) and a network-learned DDF (right) to overlap with the fixed 1747 
image. 1748 

(E) Registration outcomes shown on example tagRFP and ROI images for four different 1749 
trained networks. We randomly selected one registration problem from one of the testing 1750 
datasets and tasked the trained networks with creating a DDF to warp the moving (RFP) 1751 
image and moving ROI onto the fixed (RFP) image and fixed ROI. The full network with 1752 
full loss function aligns neurons in both RFP and ROI images almost perfectly. For the 1753 
networks trained without the centroid alignment loss, regularization loss, or image loss—1754 
while keeping the rest of the training configurations identical—the resulting DDF is 1755 
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unable to fully align the neurons and displays unrealistic deformation (closely inspect the 1756 
warped moving ROI images). 1757 

(F) Evaluation of registration performance on testing datasets under four different network 1758 
configurations. Here, we evaluated 80-100 problems per animal for all animals in the 1759 
testing data. Two performance metrics are shown. Normalized cross-correlation (NCC, 1760 
top) quantifies alignment of the fixed and warped moving RFP images, where a score of 1761 
one indicates perfect alignment. Centroid distance (bottom) is measured as the mean 1762 
Euclidean distance between the centroids of all neurons in the fixed ROI and the 1763 
centroids of their corresponding neurons in the warped moving ROI; a distance of 0 1764 
indicates perfect alignment. All violin plots are accompanied by lines indicating the 1765 
minimum, mean, and maximum values. **p<0.01, ***p<0.001, ****p<0.0001, 1766 
distributions of registration metrics (NCC and centroid distance) were compared pairwise 1767 
across all four versions of the network with the Wilcoxon signed rank test.  1768 

(G)  Example image of the head of an animal from a strain that expresses both pan-neuronal 1769 
NLS-tagRFP and eat-4::NLS-GFP. The neurons expressing both NLS-tagRFP and eat-1770 
4::NLS-GFP is a subset of all the neurons expressing pan-neuronal NLS-tagRFP. 1771 

(H) A comparison of the registration qualities of the four trained registration networks: full 1772 
network, no-centroid alignment loss, no-regularization loss, no-image loss. Each network 1773 
was evaluated on four datasets in which both pan-neuronal NLS-tagRFP and eat-4::NLS-1774 
GFP are expressed, examining 3927 registration problems per dataset. For a total of 1775 
15,708 registration problems, each network was tasked with registering the tagRFP 1776 
images. The resulting DDFs from the tagRFP registrations were also used to register the 1777 
eat-4::GFP images. For each channel in each problem, we determined which of the four 1778 
networks had the highest performance (i.e. highest NCC). Note that the no-centroid 1779 
alignment network performs the best of the RFP channel, but not in the GFP channel. 1780 
Instead, the full network performs the best in the GFP channel. This suggests that the 1781 
network without the centroid alignment loss deforms RFP images in a manner that does 1782 
not accurately move the neurons to their correct locations (i.e. scrambles the pixels). 1783 

1784 
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Figure 2. BrainAlignNet supports calcium trace extraction with high accuracy and high 1786 
SNR 1787 

(A) Diagram of ANTSUN 1.4 and 2.0, which are two full calcium trace extraction pipelines 1788 
that only differ with regards to image registration. Raw tagRFP channel data is input into 1789 
the pipeline, which submits image pairs with similar worm postures for registration using 1790 
either elastix (ANTSUN 1.4; red) or BrainAlignNet (ANTSUN 2.0; blue). The 1791 
registration is used to transform neuron ROIs identified by a segmentation U-Net (the 1792 
cuboid diagram is represented as in Figure 1A). These are input into a heuristic function 1793 
(ANTSUN 2.0-specific heuristics shown in blue) which defines an ROI linkage matrix. 1794 
Clustering this matrix then yields neuron identities. 1795 

(B) Sample dataset from an eat-4::NLS-GFP strain, showing ratiometric (GFP/tagRFP) traces 1796 
without any further normalization. This strain has some GFP+ neurons (bright horizontal 1797 
lines) as well as some GFP- neurons (dark horizontal lines, which have F~0). 1798 
Registration artifacts between GFP+ and GFP- neurons would be visible as bright points 1799 
in GFP- traces or dark points in GFP+ traces. 1800 

(C) Sample dataset from a pan-neuronal GFP strain, showing F/Fmean fluorescence. Any 1801 
variation visible here is noise. 1802 

(D) Sample dataset from a pan-neuronal GCaMP strain, showing F/Fmean fluorescence. 1803 
Robust calcium dynamics are visible in most neurons. 1804 

(E) Violin plot of the error rate of ANTSUN 2.0 registration across four eat-4::NLS-GFP 1805 
animals, computed based on mismatches between GFP+ and GFP- neurons in the eat-1806 
4::NLS-GFP strain. Dashed red line shows the error rate of ANTSUN 1.4. Note that all 1807 
error rates are <1%. 1808 

(F) Violin plots of the standard deviation of traces across three animals per strain (pan-1809 
neuronal GFP or pan-neuronal GCaMP). 1810 

(G) Violin plots of the number of detected neurons across three pan-neuronal GCaMP 1811 
animals for the two different ANTSUN versions (1.4 or 2.0). 1812 

(H) Computation time to process one animal based on ANTSUN version (1.4 or 2.0). 1813 
ANTSUN 1.4 was run on a computing cluster that provided an average of 32 CPU cores 1814 
per registration problem; computation time is the total number of CPU hours used (ie: the 1815 
time it would have taken to run ANTSUN 1.4 registration locally on a comparable 32-1816 
core machine). ANTSUN 2.0 was run locally on NVIDIA A4000, A5500, and A6000 1817 
graphics cards. 1818 
 1819 

  1820 
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Figure 3. The AutoCellLabeler Network can automatically annotate >100 neuronal cell 1822 
types in the C. elegans head 1823 

(A) Procedure by which AutoCellLabeler generates labels for neurons. First, the tagRFP 1824 
component of a multi-spectral image is passed into a segmentation neural network, which 1825 
extracts neuron ROIs, labeling each pixel as an arbitrary number with one number per 1826 
neuron. Then, the full multi-spectral image is input into AutoCellLabeler, which outputs 1827 
a probability map. This probability map is applied to the ROIs to generate labels and 1828 
confidence values for those labels. The network cuboid diagrams are represented as in 1829 
Figure 1A. 1830 

(B) AutoCellLabeler’s training data consists of a set of multi-spectral images (NLS-tagRFP, 1831 
NLS-mNeptune2.5, NLS-CyOFP1, and NLS-mTagBFP2), human neuron labels, and a 1832 
pixel weighting matrix based on confidence and frequency of the human labels that 1833 
controls how much each pixel is weighted in AutoCellLabeler’s loss function. 1834 

(C) Pixel-weighted cross-entropy loss and pixel-weighted IoU metric scores for training and 1835 
validation data. Cross-entropy loss captures the discrepancy between predicted and actual 1836 
class probabilities for each pixel. The IoU metric describes how accurately the predicted 1837 
labels overlap with the ground truth labels. 1838 

(D) During the label extraction procedure, AutoCellLabeler is less confident of its label on 1839 
pixels near the edge of ROI boundaries. Therefore, we allow the central pixels to have 1840 
much higher weight when determining the overall ROI label from pixel-level network 1841 
output. 1842 

(E) Distributions of AutoCellLabeler’s confidence across test datasets based on the 1843 
relationship of its label to the human label (“Correct” = agree, “Incorrect” = disagree, 1844 
“Human low conf” = human had low confidence, “Human no label” – human did not 1845 
even guess a label for the neuron). 1846 

(F) Categorization of neurons in test datasets based on AutoCellLabeler’s confidence. Here 1847 
“Correct” and “Incorrect” are as in (E), but “No human label” also includes low-1848 
confidence human labels. Printed percentage values are the accuracy of AutoCellLabeler 1849 
on the corresponding category, computed as ^D))+^(

^D))+^(0$1^D))+^(
 1850 

(G) Distributions of accuracy of AutoCellLabeler’s high confidence (>75%) labels on 1851 
neurons across test datasets based on the confidence of the human labels. 1852 

(H) Accuracy of AutoCellLabeler compared with high-confidence labels from new human 1853 
labelers on neurons in test datasets that were labeled at low confidence, not at all, or at 1854 
high confidence by the original human labelers. Error bars are bootstrapped 95% 1855 
confidence intervals. Dashed red line shows accuracy of new human labelers relative to 1856 
the old human labelers, when both gave high confidence to their labels. 1857 

(I) Distributions of number of high-confidence labels per animal over test datasets. High 1858 
confidence was 4-5 for human labels and >75% for network labels. 1859 

(J) Distributions of accuracy of high-confidence labels per animal over test datasets, relative 1860 
to the original human labels. 1861 

(K) Number of ROIs per neuron class labeled at high confidence in test datasets that fall into 1862 
each category, along with average confidence for all labels for each neuron class in those 1863 
test datasets. “New” represents ROIs that were labeled by the network as the neuron and 1864 
were not labeled by the human. “Correct” represents ROIs that were labeled by both 1865 
AutoCellLabeler and the human as that neuron. “Incorrect” represents ROIs that were 1866 
labeled by the network as that neuron and were labeled by the human as something else. 1867 
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“Lost” represents ROIs that were labeled by the human as that neuron and were not 1868 
labeled by the network. “Network conf” represents the average confidence of the network 1869 
for all its labels of that neuron. “Human conf” represents the average confidence of the 1870 
human labelers for all their labels of that neuron. Neuron classes with high values in the 1871 
“Correct” column and low values in the “Incorrect” column indicate a very high degree 1872 
of accuracy in AutoCellLabeler’s labels for those classes. If those classes also have a 1873 
high value in the “New” column, it could indicate that AutoCellLabeler is able to find the 1874 
neuron with high accuracy in animals where humans were unable to label it. 1875 

 1876 
  1877 
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Figure 4. Variants of AutoCellLabeler can annotate neurons from fewer fluorescent 1879 
channels and in different strains 1880 

(A) Distributions of number of high-confidence labels per animal over test datasets for the 1881 
networks trained on the indicated set of fluorophores. The “tagRFP (on low SNR)” 1882 
column corresponds to a network that was trained on high-SNR, tagRFP-only data and 1883 
tested on low-SNR tagRFP data due to shorter exposure times in freely-moving animals. 1884 

(B) Distributions of accuracy of high-confidence labels per animal over test datasets for the 1885 
networks trained on the indicated set of fluorophores. The “tagRFP (on low SNR)” 1886 
column is as in (A). 1887 

(C) Same as Figure 3K, except for the tagRFP-only network. 1888 
(D) Accuracy vs detection tradeoff for various AutoCellLabeler versions. For each network, 1889 

we can set a confidence threshold above which we accept labels. By varying this 1890 
threshold, we can produce a tradeoff between accuracy of accepted labels (x-axis) and 1891 
number of labels per animal (y-axis) on test data. Each curve in this plot was generated in 1892 
this manner. The “tagRFP-only (on low SNR)” values are as in (A). The “tagRFP-only 1893 
(on freely-moving)” values come from evaluating the tagRFP-only network on 100 1894 
randomly-chosen timepoints in the freely-moving (tagRFP) data for each test dataset. The 1895 
final labels were then computed on each immobilized ROI by averaging together the 100 1896 
labels and finding the most likely label. To ensure fair comparison to other networks, 1897 
only immobilized ROIs that were matched to the freely-moving data were considered for 1898 
any of the networks in this plot (unlike Extended Data Figure 2A, which used all 1899 
available ROIs). 1900 

(E) Evaluating the performance of tagRFP-only AutoCellLabeler on data from another strain 1901 
SWF415, where there is pan-neuronal NLS-GCaMP7f and pan-neuronal NLS-1902 
mNeptune2.5. Notably, the pan-neuronal promoter used for NLS-mNeptune2.5 differs 1903 
from the pan-neuronal promoter used for NLS-tagRFP in NeuroPAL. Performance here 1904 
was quantified by computing the fraction of network labels with the correct expected 1905 
activity-behavior relationships in the neuron class (y-axis; quantified by whether an 1906 
encoding model showed significant encoding; see Methods). For example, when the label 1907 
was the reverse-active AVA neuron, did the corresponding calcium trace show higher 1908 
activity during reverse? The blue line shows the expected fraction as a function of the 1909 
true accuracy of the network (x-axis), computed via simulations (see Methods). Orange 1910 
circle shows the actual fraction when AutoCellLabeler was evaluated on SWF415. Based 1911 
on this, the dashed line shows estimated true accuracy of this labeling. 1912 
 1913 

1914 
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Figure 5. CellDiscoveryNet and ANTSUN 2U can perform unsupervised cell type discovery 1917 
by analyzing data across different C. elegans animals 1918 
 1919 

(A) A schematic comparing the approaches of AutoCellLabeler and CellDiscoveryNet. 1920 
AutoCellLabeler uses supervised learning, taking as input both images and manual labels 1921 
for those images, and learns to label neurons accordingly. CellDiscoveryNet uses 1922 
unsupervised learning, and can learn to label neurons after being trained only on images 1923 
(with no labels provided). 1924 

(B) CellDiscoveryNet training pipeline. The network takes as input two multi-spectral 1925 
NeuroPAL images from two different animals. It then outputs a Dense Displacement 1926 
Field (DDF), which is a coordinate transformation between the two images. It warps the 1927 
moving image under this DDF, producing a warped moving image that should ideally 1928 
look very similar to the fixed image. The dissimilarity between these images is the image 1929 
loss component of the loss function, which is added to the regularization loss that 1930 
penalizes non-linear image deformations present in the DDF. 1931 

(C) Network loss curves. Both training and validation loss curves start to plateau around 600 1932 
epochs. 1933 

(D) Distributions of normalized cross-correlation (NCC) scores comparing the 1934 
CellDiscoveryNet predictions (warped moving images) and the fixed images for each 1935 
pair of registered images. These NCCs were computed on all four channels 1936 
simultaneously, treating the entire image as a single 4D matrix for this purpose. The 1937 
“Train” distribution contains the NCC scores for all pairs of images present in 1938 
CellDiscoveryNet’s training data, while the “Val+Test” distribution contains any pair of 1939 
images that was not present in its training data. 1940 

(E) Distributions of centroid distance scores based on human labels. These are computed 1941 
over all (moving, fixed) image pairs on all neurons with high-confidence human labels in 1942 
both moving and fixed images. The centroid distance scores represent the Euclidean 1943 
distance from the network’s prediction for where the neuron was and its correct location 1944 
as labeled by the human. Values of a few pixels or less likely roughly indicate that the 1945 
neuron was mapped to its correct location, while large values mean the neuron was mis-1946 
registered. The “Train” and “Val+Test” distributions are as in (D). The “High NCC” 1947 
distribution is from only (moving, fixed) image pairs where the NCC score was greater 1948 
than the 90th percentile of all such NCC scores. 1949 

(F) Labeling accuracy vs number of linked neurons tradeoff curve. Accuracy is the fraction 1950 
of linked ROIs with labels matching their cluster’s most frequent label (see Methods). 1951 
Number of linked neurons is the total number of distinct clusters; each cluster must 1952 
contain an ROI in more than half of the animals to be considered a cluster. The parameter 1953 
𝑤! describes when to terminate the clustering algorithm – higher values mean the 1954 
clustering algorithm terminates earlier, resulting in more accurate but fewer detections. 1955 
Red dot is the selected value 𝑤! = 10"# where 125 clusters were detected with 93% 1956 
labeling accuracy. 1957 

(G)  Number of neurons labeled per animal in the 11 testing datasets. This plot compares the 1958 
number of neurons labeled as follows: human labels with 4-5 confidence, 1959 
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AutoCellLabeler labels with 75% or greater confidence, and CellDiscoveryNet with 1960 
ANTSUN 2U labels with parameter 𝑤! = 10"#. 1961 

(H)  Accuracy of neuron labels in the 11 testing datasets. This plot defines the original human 1962 
confidence 4-5 labels as ground truth. “Human relabel” are confidence 4-5 labels done by 1963 
different humans (independently from the first set of human labels). AutoCellLabeler are 1964 
confidence 75% or greater labels. CellDiscoveryNet labels were created by running 1965 
ANTSUN 2U with 𝑤! = 10"#, and defining the correct label for each cluster to be its 1966 
most frequent label. 1967 

(I) Same as Figure 4(K), except using labels from CellDiscoveryNet with ANTSUN 2U. 1968 
The neurons “NEW 1” through “NEW 5” are clusters that were not labeled frequently 1969 
enough by humans to be able to determine which neuron class they corresponded to, as 1970 
described in the main text. 1971 

 1972 
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Extended Data Figure 1. Example images and performance of network trained to register 1976 
arbitrary image pairs. 1977 

(A) Performance of image registration in five different animals in the testing set. Normalized 1978 
Cross-Correlation (NCC) scores of aligned tagRFP images are shown, which indicate the 1979 
extent of image alignment (best achievable score is 1). 90-100 registration problems 1980 
examined per animal are shown as violin plots with the overlaying lines indicating 1981 
minimum, mean, and maximum values. 1982 

(B) Performance of image registration in five different animals in the testing set. Centroid 1983 
distance is the average Euclidean distance between the centroids of matched neurons in 1984 
each image (best achievable score is 0). 90-100 registration problems examined per 1985 
animal are shown as violin plots with the overlaying lines indicating minimum, mean, 1986 
and maximum values. 1987 

(C) Performance of image registration in five different registration problems (i.e. image 1988 
pairs) from one example animal. Centroid distance is the average Euclidean distance 1989 
between the centroids of matched neurons in that image pair (best achievable score is 0). 1990 
All the centroid position distances for each registration problem as shown as violin plots 1991 
with the overlaying lines indicating minimum, mean, and maximum values. 1992 

(D) Five example image pairs in the training set for BrainAlignNet. These are maximum 1993 
intensity projections of the tagRFP channel, showing two different timepoints that were 1994 
selected to be the fixed and moving images in each of these five registration problems. 1995 

(E) Five example image pairs in the training set for the network trained to align arbitrary 1996 
image pairs, including much more challenging problems. Note that the head bending is 1997 
more dissimilar for these image pairs, as compared to those in (D). Data are shown as in 1998 
(D). 1999 

(F) Performance of the network trained to register arbitrary image pairs. Quantification is for 2000 
testing data. We quantify centroid distance (average alignment of neuron centroids) and 2001 
NCC (image similarity) as in panels (A-C). By both metrics, this network’s performance 2002 
is far worse than that of the BrainAlignNet presented in Fig. 1. The two panels on the 2003 
right show that results are qualitatively similar for different animals in the testing set. 2004 
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Extended Data Figure 2. Further characterization of the AutoCellLabeler network 2023 
(A) Tradeoff of network labeling accuracy (x-axis) and number of neurons labeled (y-axis) 2024 

for the full AutoCellLabeler network. The number of neurons labeled can be varied by 2025 
adjusting the threshold confidence that the network needs to achieve to label an ROI. By 2026 
varying this threshold, we were able to generate this curve. This full curve captures the 2027 
tradeoff and shows the 75% confidence threshold (blue circle) that we selected to use in 2028 
our analyses. 2029 

(B) Confusion matrix showing which neurons could potentially be confused for one another 2030 
by AutoCellLabeler. Note that, except for the diagonal, the matrix is mostly white, 2031 
reflecting that it is mostly (98%) accurate. Neurons with some inaccuracies were 2032 
clustered to the lower left (boxed region). Note that with a linear color scale the diagonal 2033 
would be off-scale bright with correct labels. So we capped the colorbar range at 4 counts 2034 
so as to not block the ability to see actual confusion entries. For reference, the actual 2035 
mean value across the diagonal is 9.7. 2036 

(C) Positive correlation between human and autolabel confidence across the neuronal cell 2037 
types (each cell type is a blue dot). This plot also highlights that a subset of cells are more 2038 
difficult for human labelers and, therefore, also for AutoCellLabeler (i.e. the cells that are 2039 
not clustered in the upper right). 2040 
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Extended Data Figure 3. Further characterization of the different AutoCellLabeler 2044 
variants. 2045 

(A) These plots show the performance of different indicated cell annotation networks (trained 2046 
and/or evaluated on different fluorophores, as indicated). Data is displayed to show 2047 
network performance on different ROIs that it labels with different levels of confidence. 2048 
Printed percentage values are the accuracy of AutoCellLabeler on the corresponding 2049 
category, computed as ^D))+^(

^D))+^(0$1^D))+^(
. Note that the lower performing networks (for 2050 

example, tagRFP-only) are still accurate for their high-confidence labels, and that their 2051 
decreased accuracy is mostly due to a lower fraction of high-confidence labels (i.e. more 2052 
cell types where the networks had low confidence in their annotations). 2053 

(B) Example maximum intensity projection images of the worm in the tagRFP channel under 2054 
three different imaging conditions: immobilized high-SNR (created by averaging together 2055 
60 immobilized lower-SNR images together, our typical condition for NeuroPAL 2056 
imaging); immobilized lower-SNR (i.e. one of those 60 images); and freely-moving 2057 
(which was taken with the same imaging settings as immobilized lower-SNR but in a 2058 
freely-moving animal) 2059 
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Extended Data Figure 4 2062 
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Extended Data Figure 4. Further characterization of CellDiscoveryNet and ANTSUN 2U 2067 
performance 2068 

(A)  Matrix of all clusters generated by running ANTSUN 2U. Each row is a distinct cluster 2069 
(i.e. inferred cell type), while each column is a distinct animal. Black entries mean that 2070 
the given cluster did not include any ROIs in the given animal (ie: ANTSUN 2U failed to 2071 
label that cluster in that animal). Non-black entries mean that the cluster contained an 2072 
ROI in that animal. Row names correspond to the most frequent human label among 2073 
ROIs in the cluster (this was defined by first disambiguating most frequent neuron class, 2074 
and then disambiguating L from R). Green entries correspond to cases when the given 2075 
ROI’s label matched the most frequent class label (row name ignoring L/R), orange 2076 
entries correspond to the case when the given ROI’s label did not match the most 2077 
frequent class label, and blue entries mean that the given ROI did not have a high-2078 
confidence human label. The neurons “NEW 1” through “NEW 5” are clusters that were 2079 
not labeled frequently enough by humans to be able to determine which neuron class they 2080 
corresponded to, as described in the main text. 2081 
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