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Abstract

The selection and execution of context-appropriate behaviors
is controlled by the integrated action of neural circuits
throughout the brain. However, how activity is coordinated
across brain regions, and how nervous system structure en-
ables these functional interactions, remain open questions.
Recent technical advances have made it feasible to build
brain-wide maps of nervous system structure and function,
such as brain activity maps, connectomes, and cell atlases.
Here, we review recent progress in this area, focusing on

C. elegans and D. melanogaster, as recent work has produced
global maps of these nervous systems. We also describe
neural circuit motifs elucidated in studies of specific networks,
which highlight the complexities that must be captured to build
accurate models of whole-brain function.

Addresses

1 Picower Institute for Learning and Memory, Department of Brain &
Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, MA, USA

2MIT Biology Graduate Program, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA

Corresponding author: Flavell, Steven W. (flavell@mit.edu)

Current Opinion in Neurobiology 2024, 86:102868

This review comes from a themed issue on Neurobiology of Behavior
2024

Edited by Sandeep Robert Datta and Nadine Gogolla
For a complete overview see the Issue and the Editorial
Available online xxx
https://doi.org/10.1016/j.conb.2024.102868

0959-4388/© 2024 The Authors. Published by Elsevier Ltd. This is an
open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

Introduction

Even in small animals, ethologically relevant behaviors
can be remarkably complex. Nervous systems with a
limited number of neurons can direct behaviors like
foraging, courtship, and navigation, and allow animals to
respond to threats, injuries, and infection. Under-
standing how neurons act together to direct context-
appropriate behaviors is an essential question in
modern neuroscience. To date, most research has

focused on individual circuits or neurons controlling
specific behaviors. However, recent technical advances
have dramatically expanded the scope of what is
possible, allowing researchers unprecedented access
into the brains of animals.

In this review, we discuss recent advances in building,
connecting, and interpreting brain-wide maps of ner-
vous system function in C. elegans and Drosophila. We first
discuss whole-brain neural recordings from freely-
behaving animals — studies that are mapping the rela-
tionship between neural activity and behavior. We then
cover new, comprehensive maps of neuronal connectiv-
ity, genetic identity, and neuromodulation that have
provided insights into nervous system structure. Finally,
we discuss examples of individual circuit motifs with
established links between structure and function that
may aid our ability to interpret these new brain-wide
maps. As this is a fast-moving field, we have largely
limited our focus to developments over the past
few years.

Brain-wide activity maps: how the brain
encodes behavior

Recent advances have made it possible to perform
whole-brain calcium imaging in behaving animals,
yielding new insights into how brain-wide activity gen-
erates motor outputs. In C. elgans, pioneering studies
examined whole-brain activity in immobilized [1—3]
and freely moving animals [4—6]. These studies showed
that information about behavior is distributed across the
brain, with neurons representing different aspects of
locomotion such as velocity and turning.

Recent work combined brain-wide imaging in moving
animals with reliable, brain-wide cell identification.
This development allows comparisons of neuron activity
to ongoing behavior (sample data shown in Figure 1a);
importantly, these relationships can then be compared
across animals. Imaging the sex-specific neurons of the
C. elegans male tail during mating behavior showed that
stereotyped sets of neurons are active during different
phases of mating, like sliding, turning, and copulation
[7*]. While some neurons have specialized functions,
others are engaged in several aspects of mating. Func-
tional correlations between neurons changed as animals
switched behavioral outputs. Another recent study used
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Brain wide recordings in C. elegans and Drosophila reveal how neurons and brain regions encode behavior features

a) Whole brain calcium imaging data collection in C. elegans. From top to bottom: Cartoon of C. elegans. The worm connectome, showing synaptic
connections between neuronal cells (data from Refs. [19,21]). Sample image of whole brain calcium imaging in a freely moving worm, showing pan-
neuronal GCaMP and mNeptune in the head of a worm [8]. Heatmap of brain-wide activity during spontaneous behavior, with behavior quantification for

velocity, feeding rate, and angular velocity in the same animal[8].

b) Whole brain calcium imaging data collection in Drosophila. From top to bottom: Cartoon of a Drosophila. The flow of information via chemical synapses
between different brain regions as found in the Drosophila connectome [26]. Sample image of a fly brain, depicting representations of behavior in different
regions [12]. Three views show orthogonal slices through the brain of a fly. Color values show correlations for each brain region with forward velocity and
left or right angular velocity. Heat map of brain-wide activity during spontaneous fly behavior, with behavioral annotations and speed shown for the same

animal [13].

encoder models to describe how each neuron class in the
head of the hermaphrodite worm encodes specific
behavioral features [8**]. Many neurons encode single
behavioral features, like velocity or feeding, but a sur-
prising number of neurons conjunctively encode multi-
ple behaviors, revealing widespread multiplexing. While
many neuron classes represent behavior reliably, a ste-
reotyped subset changed encoding upon changes in the
animal’s internal state, suggestive of flexible remapping.
Neuronal identification allowed comparison to the
C. eélegans connectome: neurons that are connected,
especially by gap junctions, are more likely to show

similar activity [7—9]. However, anatomical predictions
of activity are not perfect, suggesting additional infor-
mation is needed.

Whole-brain recordings in freely-behaving Drosophila
similarly found a vast distribution of locomotor infor-
mation. Behaviors such as walking elicit changes in ac-
tivity across most brain regions, while less intensive
grooming behavior only recruits specific brain regions
(for example, compare heatmap of brain-wide activity to
simultaneous behavior in Figure 1b) [10], [11%*],
[12**], [13**]. Careful analysis of different locomotor
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features showed that specific brain regions are active
during distinct behavioral components such as move-
ment initiation, forward velocity, and turning [10—13].
Brain-wide activity is similar during freely-initiated and
forced walking behavior, suggesting that many of these
signals may be proprioceptive rather than motor com-
mands [11]. These behavioral signals are accompanied
by widespread sensory signals, which are also starting to
be mapped at brain-wide scale [14].

Comparing studies from these two species reveals some
consistent principles. In both animals, locomotor infor-
mation is distributed across a surprisingly large area of
the brain. This organization may enable coordinated
behavioral outputs, allowing circuits throughout the
brain to receive information about current behavior.
Sleep or quiescence states consistently evoke broad
downregulation in brain-wide activity [15,16]. In addi-
tion, anatomy may dictate activity: neurons that are
connected tend to have similar activity patterns in
C. elegans; in Drosophila, individual brain regions often
contain small functional units of neurons with related
dynamics [8,11—13]. Finally, activity in bilaterally sym-
metric neurons or brain regions is mostly similar
[8,9,12,17], with a notable exception seen in turning
neurons that activate on a specific side for directed
turns [12,18].

An interesting feature of brain-wide dynamics in both
organisms is the timescale of behavior representation.
Neuronal activity can represent current behavior or
behavior in the recent past [8,12,13]. Neurons with
related behavioral information can show varied time-
scales in their tuning to that behavior, allowing for an
ordered recruitment of different neurons as behavior
progresses [8,12,13]. In flies, neural activity could even
predict upcoming turning behavior, revealing signals
related to motor planning [18]. These studies reveal
consistent principles in the organization of global brain
dynamics that are conserved across evolutionarily
distant species.

Maps of neuronal architecture and genetic
identity

Many advances in C. elegans neuroscience were enabled
by early mapping of the connectome [19]. Recent
studies expanded that understanding, identifying con-
nections that vary across individuals, throughout devel-
opment, and based on sex [20,21]. Notably, this work
found that the greatest variability in connectivity was
observed in modulatory neurons [21]. Careful analysis
also revealed a previously unrecognized degree of orga-
nization in the neuropil of the C. elegans nerve ring,
which could influence functional interactions between
neurons (Figure 2a) [22,23]. In Drosophila, a sophisti-
cated electron microscopy (EM) platform [24] was
instrumental in the generation of the first complete map
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of synaptic connectivity [25%*], [26], adding to an
carlier connectivity map of the hemibrain [27]. This
valuable atlas revealed key principles in brain organiza-
tion; for example, densely connected groups of “rich
club” neurons represent about 30% of neurons [28]. The
Drosophila connectome is also defined for larvae [29] and
the Ventral Nerve Cord [30—33], and more targeted
work has mapped the mushroom body [34] and central
complex [35], providing a wealth of maps to aid studies
of neural circuits. For example, analysis of the mushroom
body connectome found many more visual inputs than
previously known, perhaps allowing for integration with
other convergent sensory cues. The Drosophila connec-
tomes are limited to chemical synapses thus far, owing to
technical constraints. Future annotations of electrical
synapses will provide additional insights into the syn-
aptic organization of this nervous system.

Identifying connections is only part of the battle. To
understand how these synapses function, we must
determine the identities of the underlying neurotrans-
mitters and receptors. The Drosophila connectome
benefits from artificial neural network predictions of
neurotransmitter identity based on EM data [36*]. In
both species, transcriptomic atlases revealed the distri-
bution of neurotransmitters and receptors [37—39%*].
Fluorescent reporters have also been valuable in map-
ping the expression of neurotransmitters [40—42] and
receptors [43], [44*]. This work has suggested that
there may be widespread extrasynaptic signaling: many
receptors are expressed in cells that do not receive
synapses from a cell expressing that neurotransmitter.
These genetic maps are essentially complete for the
main C. elegans neurotransmitter systems at the level of
cell types (for example, neurotransmitter identity is
shown in Figure 2b). Completion of single synapse res-
olution maps in worms and flies — a major challenge for
the future — will yield additional advances.

Another factor not accounted for in connectivity maps is
neuropeptide signaling. Understanding of C. elegans
neuropeptide systems expanded enormously with the
identification of 461 novel ligand-receptor pairs out of
over 55,000 possible pairs tested [45%*]. These findings
were combined with single-cell sequencing data to
construct a brain-wide neuropeptide signaling map.
Compared to synaptic signaling, neuropeptide signaling
is more decentralized and far denser, with >10-fold
more connections [46**]. Neuropeptide networks also
link the synaptically disconnected pharyngeal network
to the central brain. In addition, different peptidergic
systems feature dramatically different organizations:
point-to-point  signaling, autocrine signaling, and
broadcasting architectures, which may enable different
features of emergent activity (Figure 2d—f). Mapping of
the neuropeptide network in Drosophila showed neuro-
peptide expression limited to clusters of neurons but
receptor expression throughout the brain [43].
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Structural, genetic, and network maps of the C. elegans connectome

a-f) Six identical arrangements of neurons from the C. elegans connectome, where neurons are organized by sensorimotor layer (y-axis) and connectivity
(x-axis). In each panel, neurons are colored according to different structural or functional features.

a) Neurons are colored based on their neuropil layer assignments as determined in Ref. [23]. “Unassigned” neurons span multiple strata.

b) Neurotransmitter expression in all C. elegans neurons (data summarized in Ref. [40]). Neurons with multiple colors release multiple neurotransmitters.
c) Sample result comparing functional and anatomical connectivity for a single neuron, SAADL (shown in yellow). Neurons in green had changes in
activity upon SAADL stimulation [48]. Neurons in blue are synaptically connected to SAADL [19,21].

d-f) Examples of three different signaling motifs found in the neuropeptidergic connectome of C. elegans (data on neuropeptide and receptor expression
patterns from Refs. [39,45,46]).

d) Point to point signaling, with only a few neurons expressing either the neuropeptide nip-23 or its cognate receptor gnrr-3 (data from Refs. [39,45,46]).
e) Broadcasting expression from a single neuron pair (HSN) releasing neuropeptide flp-23 to many downstream partners expressing receptor dmsr-7
(data from Refs. [39,45,46]). Interestingly, HSN expresses both the neuropeptide and receptor, representing a possible autocrine loop.

f) Convergent signals emanating from many neurons releasing flp-5 are integrated by only a handful of neurons expressing its receptor eg/-6 (data from

Refs. [39,45,46]).

A central goal of future research will be to connect brain-
wide activity and connectivity maps. In C. elegans, a
recent investigation focused on comprehensively map-
ping the serotonin system’s structure and function
[47*]. The serotonergic NSM neuron is activated by
food ingestion, and its non-synaptic release of serotonin
induces slow locomotion and increased feeding behavior.
A combination of approaches was used to identify the
contributions of each of the six serotonin receptors to
these behavioral changes, determine the neurons across
the connectome that express these receptors, and
investigate how serotonin release impacts brain-wide
activity. Different receptors mediated behavioral re-
sponses to different patterns of serotonin release. In
addition, knowledge of each neuron’s serotonin receptor
expression could partially predict how their activity
changed during serotonin release, providing links be-
tween structure and function.

Another study recently attempted to bridge the gap
between architecture and activity by assembling a map
of functional connectivity [48**]. This work combined
cell-specific optogenetic activation, whole brain imag-
ing, and neuronal identification to quantify how
perturbing each neuron’s activity affects all other neu-
rons’ activities. Many relationships were identified be-
tween neurons that are not directly connected through
synapses (example shown in Figure 2¢). Additionally,
many of these fast, functional connections were
dependent on dense core vesicle release, providing ev-
idence for functionally important extrasynaptic signaling
that may be critical to understand brain-wide dynamics.

Efforts to build increasingly precise and accurate
network models of fly and worm nervous systems are
ongoing. In Drosophila, modeling constrained by
connectome and neurotransmitter data generated novel
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hypotheses about sensory and motor pathways [49].
Many of these predictions held true in subsequent
testing; for example, novel neurons predicted to be
important for water responses indeed caused a change in
water intake upon optogenetic perturbation. Accurate
predictions of known visual system neurons were also
generated by a neural network model of a smaller region,
the optic lobe, which was built using constraints from
the connectome and deep learning methods [50]. Still
other work used behavioral data to train a deep neural
network model, cleverly using behavior recordings from
flies with silenced neurons to probe the visual courtship
circuitry [51]. Current modeling efforts are limited by a
lack of data about electrical signaling, receptor dy-
namics, neuromodulation, and individual neuron char-
acteristics such as co-neurotransmitter release.

Although the work described here has produced a
wealth of information about circuit organization and
function, many challenges still need to be solved in
order to interrogate circuit function at brain-wide scale.
In the meantime, studies of specific circuits provide
valuable intuition about how nervous system structure
relates to function in the context of behavior.

Neural circuit motifs in invertebrate nervous
systems

Our understanding of how neural circuits generate
behavior has been greatly aided by case studies of in-
dividual circuits. Here, we discuss examples of studies
that uncovered network motifs that contribute to
defined features of animal behavior.

At first glance, the most straightforward pathways are
point to point signals, where one neuron communicates
directly to another. Hundreds, if not thousands, of such
connections have been identified, often underlying
specific sensorimotor responses. Recent studies have
shown that even neuropeptides can act in this direct
manner to impact behavior. For example, in worms, the
neuropeptide fp-/ promotes avoidance of pathogenic
bacteria [52*]. Upon infection, this neuropeptide is
released from one neuron class, called AVK, to promote
avoidance behavior through a single receptor, dmsr-7,
which functions in RIM/RIC neurons. fIp-1 is produced
in other neurons and has other receptors; @msr-7 is
similarly broadly expressed and has many ligands, yet a
single connection within this complex network has a
specific behavioral function. In Drosop/hila larvae, a similar
motif was found when examining nociceptive responses
to heat: the neuropeptide DSK acts via one receptor on a
single cell type to inhibit heat avoidance [53].

Another common network motif is broadcasting or “one
to many” signaling, where a single neuron signals to
several downstream partners. This network logic is
effective  for behavioral outputs that require

Brain-wide maps in invertebrates Kramer and Flavell 5

synchronization, such as changes in behavioral state. In
C. elegans, stress induced sleep is regulated by the ALA
neuron, which releases multiple neuropeptides to
downregulate distinct behavioral features such as
feeding, head movement, and locomotion [54,55].
Broadcasting signals are also useful as teaching signals
during learning. In Drosophila spatial learning, dopami-
nergic ExR2 neurons broadly innervate the head direc-
tion network and facilitate learning during rotational
movements so that animals can update their internal
representations of space [56].

There are several circuit architectures that can support
coincidence detection. In (. elegans, “hub neurons”
receiving convergent signals can weigh multiple sensory
inputs and generate integrated behavioral responses. For
example, in response to gentle touch, several mechano-
sensory neurons send concurrent signals via gap junctions
to a single downstream neuron, RIH, which acts as a
coincidence detector to direct avoidance behavior
[57,58]. Coincidence detection circuits are also central
to learning. In Drosophila, dopaminergic DAN neurons
that contain information about motor state, internal
state, and even reward and punishment converge onto
defined compartments of the mushroom body; coinci-
dent activation of specific DANs with olfactory-
responsive Kenyon cells changes how Kenyon cells
couple to mushroom  body  outputs and
behavior [59—68].

Studies of defined neural circuits have also demon-
strated that behavioral outputs are not always governed
by a single, linear circuit. Degenerate signaling pathways
can often exist, where different neural sources can lead
to the same outcome. In C. ¢legans, feeding behavior can
be initiated by several independent neurons [69]. This
work is reminiscent of degeneracy in the stomatogastric
ganglion (STG) of crustaceans, where many underlying
circuit configurations can generate the same circuit
outputs [70—72]. Work on the STG has also demon-
strated that neurons can co-release several neuropep-
tides that have additive or antagonistic effects
(reviewed in Ref. [73]). In flies and worms, release of
different neurotransmitters from the same neuron can
impact distinct behavioral outputs [74,75], effectively
allowing them to participate in multiple networks. In
order to accurately capture brain-wide activity, we will
need to consider that the underlying signaling can be
flexible, degenerate, and multiplexed and may contain
many interlinked network motifs that contribute to
overall circuit function.

Conclusion

The recent developments reviewed here have opened
an exciting new chapter in neuroscience research. Ad-
vances in hardware and software (reviewed in
Refs. [76,77]) have yielded bountiful data on neuronal
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activity in freely behaving animals under a variety of
conditions. While similarities between worms and flies
suggest that principles of brain-wide organization may
span species, examining brain-wide activity in mammals
is challenging. Recent advances have allowed for
recording of over a million neurons in the mouse
neocortex [78], but brain-wide imaging will require
additional innovations. C. elegans now have an atlas of
how most neurons encode spontaneous behavior [8],
and activity maps for the larger Drosophila brain provide a
global view of its dynamics. In addition, both species
now have genetic maps of neurotransmitter and receptor
expression, as well as maps of synaptic connections.
Despite this wealth of data, we are still missing infor-
mation crucial to our understanding of how these ner-
vous systems function.

Going forward, future experiments will need to address
the flexibility of how neural activity encodes behavior.
Examining brain-wide responses across animals in
different behavioral states, in defined sensory sur-
roundings, or during motivated behaviors will show how
neuronal encoding can change based on context (see
[65*]). Our current understanding of flexibility and
degeneracy derived from smaller circuits suggests that
brain activity maps will not be fixed.

"To fully integrate the activity and molecular maps, we
need a more complete understanding of neurotrans-
mitter system dynamics. Further studies about the
timescales of neurotransmitter release, the spatial or-
ganization of heterogencous receptors on a single
neuron, the extent of extrasynaptic signaling, and the
kinetics of different receptors will provide valuable in-
formation. Currently, these questions are typically
addressed on a case-by-case basis, but large-scale ap-
proaches [48] may be well positioned to tackle some
questions at scale. In addition, sensors for neuropep-
tides [79] and neurotransmitters [80,81] may be useful
to further address these problems. As future work ex-
pands our view of brain-wide dynamics and organization,
it will be increasingly possible to create accurate models
of brain activity to generate novel, testable predictions.
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